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Introduction

* About 270 000 hours of videos uploaded every day on YouTube alone!

* How can we make sense of all the uploaded content
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Introduction

* Transformers achieve state-of-the-art performance in a wide range

of domains.

* And that motivates us to develop transformer-based models for

video understanding.



Transformers

* Scale with larger datasets, in a manner that convolutional networks

cannot.

* Can naturally handle any input which can be “tokenized”
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Transformers for video — Questions

1. How to develop transformer models for video?
2. Transformers have quadratic complexity with respect to the
number of tokens
o How do we make them more efficient for video?
3. Videos are inherently multimodal
o How do we effectively leverage this information?
4. Transformers shine when training on large datasets

o How can we pretrain them in a data-efficient way?
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Introduction

® CNNs are architecture of choice in Vision ; Transformers are architecture of

choice in Natural Language

Vision Transformers: recent pure-transformer architecture for images

Benefits of such architectures realised at large scale
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https://arxiv.org/abs/2010.11929

ViViT: Video Vision Transformers

e Extend idea of ViT (static images) to videos
e To handle large number of tokens, explore more efficient factorised
attention variants.

e Regularisation to train on comparatively small video datasets.
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Input Encoding 1: Uniform Frame Sampling

e Sample frames, extract 2D patches and linearly project (as in ViT)

e Effectively consider a video as a “big image”
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Input Encoding 2: Tubelet embedding

e Extract 3D tubelets to encode spatio-temporal “tubes” into tokens
e Temporal information included from the initial tokenisation stage.

e Works better when initialised appropriately.
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ViViT: Joint Spatio-Temporal Attention

e Simply forward many spatio-temporal tokens through multiple

transformer layers.

e Requires a lot of computation, and high-capacity means it can overfit

easily on smaller datasets.
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ViViT: Space/Time Factorisations
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Alternative ways of mixing the temporal and spatial information

Reduces complexity from O((w * h)? + t2 ) instead of O((w*h*t)?)




ViViT Factorisations

Factorised encoder
“Late fusion” of spatial
and temporal information
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Input Encoding

* Tubelet embedding works better if 3D filter is initialised appropriately.
® Filter inflation [1, 2]: E=;Eme - Eme. - Bl

® (Central frame initialiser: E=0.....Emg,...,0l

* Initialise to “select” central frame using 2D filter weights.

Top-1 accuracy

Uniform frame sampling 78.5
Tubelet embedding

Random initialisation [ 3.2
Filter inflation [6] 17.6
Central frame)| 79.2

[1] Carreira and Zisserman. CVPR 2017. Google Research

[2] Feichtenhofer et al. NeurlPS 2016


https://arxiv.org/pdf/1705.07750.pdf
https://papers.nips.cc/paper/2016/file/3e7e0224018ab3cf51abb96464d518cd-Paper.pdf

Model Variants

e ITokens fixed across models

e Unfactorised model works best on larger datasets (ie Kinetics), but

slowest.
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Model Variants

e Factorised encoder works best on smaller datasets (ie Epic Kitchens)

as it overfits less.

B Kinetics 400 | Epic Kitchens
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Regularisation

e Video datasets are not as large as ImageNet /ImageNet21k / JFT
o Original ViT paper didn't get good performance on ImageNet.

e JStrategies
o Use pretrained image models from ImageNet-21K or JFT
o For smaller datasets, we use further regularisation methods, inspired by

DelT.

Top-1 accuracy

Random crop, flip, colour jitter 38.4

+ Kinetics 400 initialisation 39.6

+ Stochastic depth [28] 40.2 5.3% gain on
+ Random augment [10] 41.1 Epic Kitchens
+ Label smoothing [58] 43.1

+ Mixup [79] 43.7 Google Research



https://arxiv.org/pdf/2012.12877.pdf

State-of-the-art Results at time

(a) Kinetics 400 (b) Kinetics 600 (d) Epic Kitchens 100 Top 1 accuracy
Method Topl Top5 Views Method Topl Top5 Views Method Action Verb Noun
blVNet [16] 73.5 912 - AttentionNAS [73] 79.8 944 - TSN [69] 332 602 46.0
STM [20] 737 916 _ LGD-3D R101 [4¢] 815  95.6 - TRN [23] 353 659 454
SlowFast R101-NL[1%] 81.8 951 10X 3 TBN [33] 367 660 47.2
TEA 76.1 925 10x 3
TSM-[ReiNeXt-IOI 4o 763 - O_X X3D-XL[17] 819 955 10X 3 TSM [40] 383 679 49.0
’ § TimeSformer-HR [7] 824 96.0 - SlowFast [12] 38.5 65.6 50.0
BDNL[72] 717 933 10X 3 WiviTL/16x2 825 956 4x3 = o -
CorrNet-101 [67] 79.2 - 10 x 3 ViViT-L/16x2 320 830 957 4x3 iViT-L/16x2 Fact. encoder . 66.4 56.
ip-CSN-152 [63] 792 938 10x 3 T w3 92 ax3
LGD-3D R101 [4¢] 794 944 - 1vil-L/16x : - X o S T o S
SlowFastR101-NL[18]  79.8 939 10x3 _YiViLH/16x2(JFT) 858 %5 4x3 © € g
X3D-XXL [17] 804 946 10x3 o Method Topl  Top5
TimeSformer-L [7] 80.7 947 1x3 (c) Moments in Time TRN [27] 488 716
ViViT-L/16x2 806 947 4x3 Topl Top5 SlowFast [17, 77] 61.7 _
ViViT-L/16x2 320 813 947 4x3 TimeSformer-HR 62.5 -
TSN [69] o o0 TSM [40] - 634 885
Methods with large-scale pretraining TRN [83] 28.3 334 STM [20] 64.2 89.8
ip-CSN-152 [63] IG [41]) 825 953 10X 3 13D [6] 295 56.1 TEA [29] 65.1 _
ViViT-L/16x2 (JFT) 828 955 4x3 ZIVN"L{ N] . gi-g gg'g bIVNet [16] 652 903
VIVITL/16x2320 JFT) 835 955 4x3 SSSHIICREIEION [ : : — p PPy
ViVIT-H/16x2 (JFT) 848 958 4x3 ViVIT-L/16x2 380 649 ViviT-LiToxd Bact. cncoder 6> -
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Conclusion

® Family of pure-transformer architectures for video
® Showed how to regularise models appropriately to train on smaller
datasets. Detailed ablations in paper

® State-of-the-artresults on 5 video datasets at time.

® A Arnab etal ViViT: A Video Vision Transformer. ICCV, 2021.
® [Paper], [Code]

Google Research


https://arxiv.org/pdf/2103.15691.pdf
https://github.com/google-research/scenic/tree/main/scenic/projects/vivit
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Motivation

* Transformers have a “global receptive field” and model long-range
interactions.

* Modelling inputs at multiple resolutions has been a central idea in
Computer Vision, since handcrafted features (Burt and Adelson 1987,

Dalal and Triggs 2005, Lazebnik et al 2006).

* In space: detect objects of variable sizes
* Intime: detect events of different durations

* How to model multiple spatio-temporal resolutions with

transformers?


https://ieeexplore.ieee.org/document/1095851
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://hal.inria.fr/inria-00548585/document

Multiview Transformers (MTV)

MLP Head Class

[ Global Encoder ]

* Model multiscale, temporal information

(Multiview Transformer

* Create different “views” of the input r— P
. . . [ Encoder block ] —— [ Encoder block ]
* Process these views in parallel, with o TN
[ Encoder block ] [ Encoder block ]

lateral connections between

transformer layers. %|— ! QQQQQQ}

[ Embed ] [ Embed

* Final global encoder aggregates tokens g

Radis

from each view encoder.
* Views are constructed by tokenisations

of the same input.



Multiview Transformers (MTV)
mass

o o . Global Encoder
* Views are constructed by tokenisations - J
(Multiview Transformer
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* Few tokens

* Qverall context of the scene.



Multiview Transformers

* QOur naming convention example

°* B/2+S/4 +Ti/8
* Three views
* “Base” transformer with tubelet size of 16x2
* “Small” transformer with tubelet size of 16x4
* “Tiny” transformer with tubelet size of 16x8

* Single view is the same as a ViViT Factorised Encoder



How to fuse different views?

* Paper considers multiple | ® o
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How to fuse different views?

* The best was using cross-attention from view i+17to view i, where

views are ordered by increasing numbers of tokens.

Model variants Method GFLOPs MParams Top-1

B/4 145 173 78.3
S/8 N/A 20 60 74.1
Ti/16 3 13 67.6
Ensemble 168 246 77.7

Late fusion 187 306 80.6

B/4+S/8+Ti/16 MLP 202 323 80.6
Bottleneck 188 306 81.0

CVA 195 314 81.1




What encoder should we use for each view?

* The encoder for each "view” does not have to be the same

* Better to use a deeper encoder for the view with more tokens.

Model variants GFLOPs MParams Top-1

B/8+Ti/2 81 161 Tered
B/2+Ti/8 LET 221 81.3
B/8+S/4+Ti/2 202 250 78.5
B/2+S/4+Ti/8 384 310 81.8

B/4+S/8+Ti/16 195 314 81.1




What encoder should we use for each view?

* The encoder for each "view” does not have to be the same

* Using deeper encoder for other views does not help

Model variants GFLOPs MParams Top-1

B/4+S/8+Ti/16 195 314 81.1
B/4+B/8+B/16 324 759 81.1
B/2+Ti/8 337 221 81.3
B/2+B/8 448 465 81.5
B/2+S/4+T1/8 384 310 81.8

B/2+B/4+B/8 637 751 81.7




More views are better than deeper models

* ltis better, in terms of accuracy and computational cost, to add

multiple views in parallel, than to use a deeper, single-view model

(ViVIT).
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State-of-the-art results

(a) Kinetics 400 (b) Kinetics 600 (d) Kinetics 700
Method Topl Top5 Views TFLOPs Method Topl Top5 Topl Top5
TEA [40] 76.1 925 10x3 210 SlowFast R101-NL [23] 81.8 95.1 VidTR-L [23] 70.2 -
TSM-ResNeXt-101 [ ] 76.3 _ _ _ X.3D-XL [ ] 81.9 95.5 Slowfast R101 [ ] 71.0 89.6
I3D NL [74] 777 933 10x 3 1077 TimeSformer-L [6] 822 95.6 MoViNet-A6 [35] 72.3 -
VidTR-L [47] 11 939 10x3 1053 yoomnel R o0 ok MTV-L »2 o7
LGD-3D R101 [52] 794 944 - - MViT-B [21] 3.8 96.3 CoVeR (JFT-3B) [¢1] 79.8 -
SlowFast R101-NL [23] 798 939 10x3  7.02 MoViNet A6 [*°] 848 965 MTV-H (JFT) 780 933
X3D-XXL [27] 804 946 10x3 582 MTV-B 83.6 96.1 MTV-H (WTS) 82.2 95.7
OmniSource [20] 80.5 944 _ _ MTV-B (320p) 84.0 96.2 MTV-H (WTS 280p) 834 96.2
Egloerifl:;ﬁ; I[‘ []] g(l)z gg; 110233 278 1746 R3D-RS (WTS) [19] 84.3 - (e) Epic-Kitchens-100 Top 1 accuracy
MVIiT-B [7] 812 95.1 3x3 410 VIVITH [] (JFT) 858 965 Method Action Verb Noun
. ’ ’ : TokenLearner-L/10 [55] JFT) 86.3  97.0

MoViNet-A6 [°] 8L5 953 1x1 039 Florence [79] (FLD-900M) 878 97.8 ViViT-L FE [7] 440 664 568
ViViT-L FE [7] 817 938 1x3 1194 CoVeR (JFT-3B) [¢1] 879 - MFormer-HR [51] 445 670 585
MTV-B 81.8 950 4x3 479 MTV-L (JFT) 854  96.7 MoViNet-A6 [35] 477 722 573
MTYV-B (320p) 824 952 4x3 11.16 MTYV-H (JFT) 86.5 97.3 MTV-B 46.7 67.8 60.5

: — MTV-H (WTS) 89.6 983 MTV-B (320p) 486 680 63.1
Methods with web-scale pretraining MTV-H (WTS 280p) 903 985
VATT-L [2] (HowTo100M) 82.1 955 4x3 29.80 MTV-B (WTS280p) 50.5 699 63.9
g)3CD§11;ISI(5\$’I[‘S)][(I(]}) g§§ 95_'3 ig i g 3;3 (c) Something-Something v2 (f) Moments in Time
OmniSource [20] (IG) 83.6 96.0 - - Method Top 1 Top 5 Top 1 Top 5
}F];Z;:Li;rie(rlfjrl)o [55] UFT) Z:ZZ gg i . g g:; SlowFastR50 [*5, /7] 617 — AssembleNet-101 [56] 343 627

TimeSformer-HR [6] 62.5 - ViViT-L FE [3] 38.5 64.1

Florence [79] (FLD-900M) 865 973 4x3 - VidTR [27] 63.0 _ MoViNet-A6 [35] 402 _
CoVeR (JFT-3B) [¢1] 872 - 1x3 - ViViT-L FE [?] 659  89.9 MTV-L 417 697
MTV-L (JFT) 843 963 4x3 18.05 MVIT [21] 67.7 90.9
MTV-H (JFT) 858 966 4x3 4447 MFormer-L [1] 68.1 912 VATT-L (HT100M) [?] ~ 41.1 677
MTV-H (WTS) 89.1 982 4x3 4447 MTV-B 67.6  90.1 MTV-H (JFT) 44.0 702
MTV-H (WTS 280p) 899 983 4x3 7357 MTV-B (320p) 68.5  90.4 ﬁgﬁ Eg?g)zamp) 3513 ;‘s‘:;




Multimodal MTV

* Recent extension of MTV to
multiple modalities
* Each “view” is now a different
modality
* Audio as spectrograms

* Optical flow

MLP Head Class
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Multimodal MTV

* Use the deepest encoder for RGB - the most discriminative modality.

* Won this year’s Epic Kitchens Action Recognition challenge.

View 1 View 2 View 3 Accuracy
Base: RGB Small: RGB Tiny: RGB 52.7
Base: RGB Small: Tiny: RGB 53.4
Base: RGB Small: Flow Tiny: RGB 53.2
Base: RGB Small: Tiny: Flow 53.6




Conclusion

* Processing multiple “views” in parallel allows us to achieve superior
accuracy-speed trade-offs for video classification.

* Easy to extend this to leverage multiple modalities.

* State-of-the-art results across 6 datasets ; winner of Epic Kitchens

challenge.

* [Paper], [Epic Kitchens challenge], [Code]



https://arxiv.org/pdf/2201.04288.pdf
https://arxiv.org/abs/2206.09852
https://github.com/google-research/scenic/tree/main/scenic/projects/mtv

TokenLearner: What Can 8
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Vision Transformers

[ Classification }-—[ Transformer layer }
head 1T 1 1 17 17T 1T 711
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[Dosovitskiy et al., ICLR 2021] 1024 tokens for 512x512 input Slide by Michael Ryoo



Motivation

* Transformers have quadratic complexity with respect to the number
of tokens.

* Do we really need that many tokens and process them all at every
layer?

* Can we not “learn” to adaptively obtain much fewer tokens instead,

and focus on processing them?



TokenlLearner

Input tensor

Figure by Tom Small



TokenLearner

* TokenlLearner is a form of spatial

1x1xC 1x1xC 1x1xC
attention mechanism Learned
tokens
* (Given animage-like tensor, it
¢ Welghts each pixel differently Spatial Spatial Spatial
pooling pooling pooling
. HxWx1 HxWx1 HxWx1
(i.e., focuses on a subset of .
=y Bl R B
. attention
pixels) T : :
e Summarizes them as a token. o,(x) o) os(X)
* Could be applied to intermediate HXWXC
tensors -
npu
e \Works well with a small number of tenSox

tokens! Example: 8 or 16



TokenLearner

* The a(-) function can be anything

1x1xC 1x1xC 1x1xC
* Examples Learned g
tokens B
* Conv layers
¢ MLP Spatial Spatial Spatial
. pooling o pooling T pooling
. . XVVX XVVX XVVX
* Cross-attention with learned —_—

. . attention .— © l__’ © !__’ ©
queries (equivalent to T : :
PerCelver) o,(X) 0,(X) ag(x)

* When implementing, a4.5(+) isa HXWXC

single function with S output
Input

channels. tenSox



https://arxiv.org/pdf/2103.03206.pdf

TokenLearner within ViT

* TokenLearner module inserted in Object class

the middle of Transformer Classification head
8 tokens
architecture Teansformer Computation
* The computation after the ... B8 fokens i)
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Transformer
TokenlLearner module becomes . /
8 tokens
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Where do we place TokenLearner?

(Relative) TokenLearner loc.

Interestingly, TokenLearner performs better, while being faster. Adaptiveness!
Experiment using ViT-B, pretraining on JFT and doing ImageNet few-shot evaluation

(same setting as original ViT paper).
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Scaling up TokenlLearner

* By using TokenlLearner, we can now
* Process more initial tokens (use smaller patch sizes)
* Use more transformer layers.

* Results using ViT-L with 512x512 inputs, and 16 learned tokens.

Base # layers TokenLearner | GFLOPS ImageNet Topl
VIiT L/16 24 : 363.1 87.35
ViT L/16 24 16-TL at 12 178.1 87.68
VIiT L/16 24+11 16-TL at 12 186.8 87.47
ViT L/14 24+11 16-TL at 18 361.6 88.37




Scaling up TokenlLearner

* By using TokenlLearner, we can now
* Process more initial tokens (use smaller patch sizes)
* Use more transformer layers.

* Results using ViT-L with 512x512 inputs, and 16 learned tokens.

Method # params. ImageNet ImageNet Real
BiT-L 928M 87.54 90.54
ViT-H/14 654M 88.55 90.72
ViT-G/14 1843M 90.45 90.81
TokenLearner L/10 (24+11) 460M 88.5 90.75

TokenLearner L/8 (24+11) 460M 88.87 91.05




TokenLearner on video

* Once again, we can use the higher efficiency of TokenlLearner to process more
tokens and achieve state-of-the-art results.
* Results from inserting TokenlLearner into ViViT-L, at time of publication:

B VviviTL/16 [l ViVIiT H/14

TokenLearner L/10
TokenLearner Previous SOTA  ss
Kinetics-400 85.4 84.9 86
Kinetics-600 86.3 86.1 o4
Charades 66.3 63.2 .
AViD 53.8 50.9
80

Kinetics 400 Kinetics 600



Conclusion

* There are lots of redundant tokens in images and video.

* We can learn to summarise them into a smaller subset of tokens, and
process only those.

* With more efficient models, we can process more tokens to improve

accuracy.

* MRyoo et al. TokenLearner: What Can 8 Learned Tokens Do for
Images and Video. NeurlPS 2021.
° [P_a@], [Code], [Blog] Google Research



https://arxiv.org/pdf/2201.04288.pdf
https://github.com/google-research/scenic/tree/main/scenic/projects/mtv
https://ai.googleblog.com/2021/12/improving-vision-transformer-efficiency.html

Audiovisual Masked
Autoencoders

Lili Georgescu, Eduardo Fonseca,
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Introduction

Pretraining

* Video models rely on pretrained image models
for initialisation
* Masked Autoencoders present a self-

supervised alternative

- R
[ Encoder ]
[ Decoder ]

* Can we leverage multiple modalities for

stronger representation learning?

*  For multimodal downstream tasks?

* For unimodal downstream tasks?
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Masked Autoencoders

* Tokenise the input

* Remove a% of the tokens

* Encode these unmasked tokens.

* Add mask tokens back into the
sequence.

* Decode the tokens, and
reconstruct the original inputs.

* Inspired by BERT for NLP.
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Masked Autoencoders

* Representation is learned by the
encoder.

* After pretraining, we discard the
decoder, and finetune the

encoder on downstream tasks.

Encoder [ Encoder Encoder
Video Audio Audiovisual
classification classification classification
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Architecture

* Different alternatives for combining audio and visual information at
different stages of the encoder and the decoder.
* Early-, mid- or late-fusion. Parameter sharing instead.

Video Audio Video Audio Video Audio [ Video || Audio |
Tokens Tokens Tokens Tokens Tokens Tokens s Tokens L Tokens )

@ @ @ @ @ @ [ Vﬁo 1( Aio

] Video Audio <1 U Ll - Transformer || Transformer |
[ e gl el ] Transformer || Transformer T I It iy
@ @ @ @ @ @ [ Joint Transformer ]
N N NF NI
Video i/ Audio ! | Video ! Audio | | Video i Audio ! | Video i Audio
Tokens i Tokens : | Tokens i Tokens : | Tokens ! Tokens : ' Tokens i Tokens
a) “Early fusion” b) Separate c¢) Shared d) Mid-fusion
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Reconstruction Objective

1. Joint Reconstruction

* Simply encode both modalities and reconstruct both modalities.

* Equalloss weights on each modality.

* Normal MAE training, but with more tokens from more modalities.

Encoded tokens

Reconstructed tokens

Reconstruction loss on
Modality 1

Reconstruction loss on
Modality 2
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Modality Inpainting

* Reconstruct audio tokens from encoded video tokens and audio

mask tokens (and vice versa)

* Requires video tokens to encode the audio to be able to

reconstruct the audio from video alone.
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Datasets for experiments

* VGGSound

* 200K examples. Object making the sound is always present in the video.

Videos from YouTube.

* AudioSet

* 2M examples. Videos from YouTube. Weaker correlation between audio and

video

* Epic Kitchens

* 80K examples.
* Egocentric videos from head-mounted cameras. For evaluating transfer

performance, as it presents a challenging domain shift. Google Research



Which architecture?

* “Separate” and “Mid-fusion” consistently best for the encoder

* Encoding strategy matters for audiovisual tasks.

* Weight-sharing in the decoder is consistently better.

* Experiments on VGGSound

Encoder Decoder Audio-only Video-only Audiovisual
Early fusion Shared 95.9 46.5 62.2
Early fusion Separate 55.7 43.6 61.1
Separate Shared 55.4 48.9 63.0
Shared Separate 55.4 45.9 61.3
Mid-fusion  Shared 55.8 48.5 63.5
Mid-fusion  Early 95.95 48.5 63.3
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Which objective?

* The vanilla joint reconstruction performs the best

* Modality inpainting is harder to train

Objective Audio-only Video-only Audiovisual
Joint reconstruction 55.5 46.5 62.2
Inpainting (video from audio) 51.5 39.9 58.4
Inpainting (audio from video) 52.5 38.1 08.2
Inpainting (both modalities) 54.1 38.6 58.4
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What about training separate MAEs?

* An alternative is to train separate unimodal MAEs
* Audiovisual MAE improves substantially for audiovisual finetuning
* On par for audio-only or video-only finetuning

* Means we can pretrain a single model, and use for different downstream

tasks
Pretraining Audio only Video only Audiovisual
AudioMAE 55.7 42.1 58.3
VideoMAE 52.8 49.3 62.1
Audiovisual MAE 55.8 48.5 63.5
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lterations matter more than the dataset size

* AudioSet is 10x the size of VGGSound
* But when we pretrain on both datasets for the same number of iterations,

performance is similar.

W VGGSound AudioSet Epic Kitchens
Pretrain

VGGSound 65.0 51.2 45.5
AudioSet 64.7 51.3 43.5
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More iterations are consistently better

* Accuracy consistently improves as we pretrain for longer

* We always pretrain on VGGSound, and accuracy plateaus when finetuning
on VGGSound

* But we continually improve when transferring on Epic Kitchens

Epochs 200 400 800 1200

VGGSound 63.2 639 650 64.9
Epic Kitchens 41.8 425 455 46.0
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Comparison to state-of-the-art

* Our modelis a simple. Encoder is
* Standard vision transformer for single-modal tasks
* MBT for multimodal tasks
* Other methods use modality-specific architectures
* We only perform self-supervised pretraining.
* Other methods use supervised pretraining on multiple datasets.
* Can still achieve state-of-the-art results

* Shows promise of self-supervised pretraining instead of supervised.
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Comparison to state-of-the-art

(a) VGGSound. We report Top-1 accuracy. (b) AudioSet. We report the mAP for audiovisual fusion models.

Epochs Pretraining A Vv AV Epochs Pretraining Training set A \'% AV
Kazakos e al. [42]  Sup. Im1K 575 _ _ GBlend [71] Im1K AS-2M 324 18.8 41.8
PlayItBack [63] Sup. Im21K 537 _ B Perce¥ver[ ] None AS-2M 384 258 44.2
PolyViT [45] Sup. Im21K. AS ~ 55.1 3 3 PerceiverlO [39] None AS-2M - - 44.9

Y P ’ 2.4 Fayek et al. [24] ImlIK AS-2M 384 257 462
MBT [ ] Sup Im21K 52.3 51.2 ﬂ MBT [49] Im21K AS-500K 415 313 49.7
Ours SSL VGGSound 57.2 50.3 65.0 Ours SSL AS-2M  AS-500K 457 306 513

(c) Epic Kitchens. We report Top-1 accuracies for verbs, nouns and actions (pairs of verbs and nouns).

Audio Video Audiovisual

Method Pretraining Verb Noun Action Verb Noun Action Verb Noun Action
Damen et al. [19] Sup. Im1K 426 224 14.5 - - - - - -
Kazakos et al. [42] Sup. VGGSound 46.1 23.0 15.2 - . - - - -
PlayltBack [63] Sup. Im21K 47.0 23.1 15.9 - - - - - -
TSM [46] Sup. Im1K + K400 - - - 679 490 38.3 - - -
ViViT-L Fact. Encoder [6] Sup. Im21K + K400 — - - 664 56.8 44.0 — — -
MotionFormer [54] Sup. Im21K + K400 — — - 67.0 58.5 44.5 - - -
MTV [74] Sup. Im21K + K400 - - - 67.8 60.5 46.7 - - —
MBT [49] Sup. Im21K 443 224 13.0 62.0 564 40.7 64.8 58.0 43.4

Ours SSL VGGSound 52.7 272 19.7 708 559 458 714 564 46.0




Comparison to state-of-the-art

(a) VGGSound. We report Top-1 accuracy. (b) AudioSet. We report the mAP for audiovisual fusion models.

Epochs Pretraining A Vv AV Epochs Pretraining  Training set A \'% AV
Kazakos e al. [42]  Sup. Im1K 525 _ _ GBlend [71] Im1K AS-2M 324 18.8 41.8
PlayItBack [63] Sup. Im21K 537 _ B Perce}ver [40] None AS-2M 384 258 44.2
PolyViT [45] Sup. Im21K. AS ~ 55.1 3 3 PerceiverlO [39] None AS-2M - - 44.9

Y P ’ 2.4 Fayek et al. [24] ImlIK AS-2M 384 257 462
MBT [ ] Sup Im21K 52.3 51.2 ﬂ MBT [49] Im21K AS-500K 415 313 49.7
Ours SSL VGGSound 57.2 50.3 65.0 Ours SSLL AS-2M  AS-500K 457 30.6 51.3

(c) Epic Kitchens. We report Top-1 accuracies for verbs, nouns and actions (pairs of verbs and nouns).

Audio Video Audiovisual

Method Pretraining Verb Noun Action Verb Noun Action Verb Noun Action
Damen et al. [19] Sup. Im1K 426 224 14.5 - - - - - -
Kazakos et al. [42] Sup. VGGSound 46.1 23.0 15.2 - . - - - -
PlayltBack [63] Sup. Im21K 47.0 23.1 15.9 — - - - - -
TSM [46] Sup. Im1K + K400 - - - 6791 49.0 38.3 - - -
ViViT-L Fact. Encoder [6] Sup. Im21K + K400 — - - 66.4] 56.8 44.0 — — -
MotionFormer [54] Sup. Im21K + K400 - - — 67.0] 58.5 44.5 — - -
MTV [74] Sup. Im21K + K400 - - - 67.81 60.5 46.7 — — —
MBT [49] Sup. Im21K 443 224 13.0 |62.0] 564 40.7 64.8 58.0 434

Ours SSL VGGSound 52.7 272 19.7 |70.8] 559 458 714 564 46.0




Pretraining

Conclusion

* Leverage multiple modalities present in video

for pretraining.

* Effective for unimodal and multimodal

downstream tasks.

* L Georgescu et al. Audiovisual Masked

Autoencoders. Arxiv 2022.
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Questions?

* A Arnab et al. ViViT: A Video Vision Transformer. ICCV 2021.

* S Yan et al. Multiview Transformers for Video Recognition. CVPR 2022.

* X Xiong et al. M&M Mix: A Multimodal Multiview Transformer
Ensemble. arXiv 2022

* MRyoo et al. TokenLearner: What Can 8 Learned Tokens Do for
Images and Video. NeurlPS 2021.

* L Georgescu et al. Audiovisual Masked Autoencoders. arXiv 2022
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