Large-Scale Video Understanding with Transformers

Anurag Arnab

Google Research

Introduction

- Transformers achieve state-of-the-art performance in a wide range of domains.
- And that motivates us to develop transformer-based models for video understanding.

Transformers

- Scale with larger datasets, in a manner that convolutional networks cannot.
- Can naturally handle any input which can be "tokenized"

Transformers for video – Questions

- 1. How to develop transformer models for video?
- 2. Transformers have quadratic complexity with respect to the number of tokens
 - How do we make them more efficient for video?
- 3. Videos are inherently multimodal
 - How do we effectively leverage this information?
- 4. Transformers work well across a large range of domains
 - Can we train a single transformer model for everything?

ViViT: A Video Vision Transformer

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lucic, Cordelia Schmid

Google Research

Introduction

- CNNs are architecture of choice in Vision ; Transformers are architecture of choice in Natural Language
- Vision Transformers: recent pure-transformer architecture for images
- Benefits of such architectures realised at large scale

ViViT: Video Vision Transformers

- Extend idea of ViT (static images) to videos
- To handle large number of tokens, explore more efficient factorised attention variants.
- Regularisation to train on comparatively small video datasets.

Input Encoding 1: Uniform Frame Sampling

- Sample frames, extract 2D patches and linearly project (as in ViT)
- Effectively consider a video as a "big image"

Google Research

Input Encoding 2: Tubelet embedding

- Extract 3D tubelets to encode spatio-temporal "tubes" into tokens
- Temporal information included from the initial tokenisation stage.
- Works better when initialised appropriately.

Google Research

ViViT: Joint Spatio-Temporal Attention

- Simply forward many spatio-temporal tokens through multiple transformer layers.
- Requires a lot of computation, and high-capacity means it can overfit

ViViT: Space/Time Factorisations

Alternative ways of mixing the temporal and spatial information Reduces complexity from $O((w * h)^2 + t^2)$ instead of $O((w * h * t)^2)$

ViViT Factorisations

Factorised encoder

• "Late fusion" of spatial and temporal information

Factorised self-attention

 Perform self-attention separately over space and time Factorised dot-product

 Attention heads separated over space and time dimensions.

Google Research

Input Encoding

- Tubelet embedding works better if 3D filter is initialised appropriately.
 - Filter inflation $[\underline{1}, \underline{2}]$: $\mathbf{E} = \frac{1}{t} [\mathbf{E}_{\text{image}}, \dots, \mathbf{E}_{\text{image}}].$
 - Central frame initialiser: $\mathbf{E} = [\mathbf{0}, \dots, \mathbf{E}_{image}, \dots, \mathbf{0}].$
 - Initialise to "select" central frame using 2D filter weights.

	Top-1 accuracy
Uniform frame sampling	78.5
<i>Tubelet embedding</i> Random initialisation [22] Filter inflation [6] Central frame	73.2 77.6 79.2

Model Variants

- Tokens fixed across models
- Unfactorised model works best on larger datasets (ie Kinetics), but

Model Variants

- Factorised encoder works best on smaller datasets (ie Epic Kitchens)
 - as it overfits less.

Regularisation

- Video datasets are not as large as ImageNet / ImageNet21k / JFT
 - Original ViT paper didn't get good performance on ImageNet.
- Strategies
 - $_{\odot}$ $\,$ Use pretrained image models from ImageNet-21K or JFT $\,$
 - For smaller datasets, we use further regularisation methods, inspired by <u>DeIT</u>.

	Top-1 accuracy	
Random crop, flip, colour jitter	38.4	
+ Kinetics 400 initialisation	39.6	
+ Stochastic depth [28]	40.2	5.3% gain on
+ Random augment [10]	41.1	_Epic Kitchens
+ Label smoothing [58]	43.1	
+ Mixup [79]	43.7	Google Research

State-of-the-art Results on 5 Datasets

(a) Kinetics 400								
Method	Top 1	Top 5	Views	Method				
blVNet [16]	73.5	91.2	_	Attenti				
STM [30]	73.7	91.6	-	LGD-3				
TEA [39]	76.1	92.5	10×3	SlowFa				
TSM-ResNeXt-101 [40]	76.3	_	-	X3D-X TimeSt				
I3D NL [72]	77.7	93.3	10×3	ViViT-				
CorrNet-101 [67]	79.2	-	10×3	ViViT-				
ip-CSN-152 [63]	79.2	93.8	10×3					
LGD-3D R101 [48]	79.4	94.4	-	ViViT-				
SlowFast R101-NL [18]	79.8	93.9	10×3	ViViT-				
X3D-XXL [17]	80.4	94.6	10×3					
TimeSformer-L [2]	80.7	94.7	1×3					
ViViT-L/16x2	80.6	94.7	4×3					
ViViT-L/16x2 320	81.3	94.7	4×3	TS				
Methods with large-scale pr	retraining	2		TI				
ip-CSN-152 [63] (IG [41])	82.5	95.3	10×3	13				
ViViT-L/16x2 (JFT)	82.8	95.5	4×3	bl				
ViViT-L/16x2 320 (JFT)	83.5	95.5	4×3	A				
ViViT-H/16x2 (JFT)	84.8	95.8	4×3	Vi				

()

(b) Kinetics 600									
Method	Top 1	Top 5	Views						
AttentionNAS [73]	79.8	94.4	_						
LGD-3D R101 [48]	81.5	95.6	-						
SlowFast R101-NL [18]	81.8	95.1	10×3	5					
X3D-XL [17]	81.9	95.5	10×3	5					
TimeSformer-HR [2]	82.4	96.0	-						
ViViT-L/16x2	82.5	95.6	4×3						
ViViT-L/16x2 320	83.0	95.7	4×3						
ViViT-L/16x2 (JFT)	84.3	96.2	4×3						
ViViT-H/16x2 (JFT)	85.8	96.5	4×3						
(c) Mome		Time op 1	Top 5						
TSN [69]	2	5.3	50.1						
TRN [83]	2	8.3	53.4						
I3D [6]	2	9.5	56.1						
blVNet [16]	3	1.4	59.3						
AssembleNet-101 [5	1] 3	4.3	62.7						
ViViT-L/16x2	3	8.0	64.9						

(d) Epic Kitchens 100 Top 1 accuracy

Method	Action	Verb	Noun		
TSN [69]	33.2	60.2	46.0		
TRN [83]	35.3	65.9	45.4		
TBN [33]	36.7	66.0	47.2		
TSM [40]	38.3	67.9	49.0		
SlowFast [18]	38.5	65.6	50.0		
ViViT-L/16x2 Fact. encoder	44.0	66.4	56.8		

(e) Something-Something v2								
Method	Top 1	Top 5						
TRN [83]	48.8	77.6						
SlowFast [17, 77]	61.7	-						
TimeSformer-HR [2]	62.5	_						
TSM [40]	63.4	88.5						
STM [30]	64.2	89.8						
TEA [39]	65.1	-						
blVNet [16]	65.2	90.3						
ViViT-L/16x2 Fact. encoder	65.4	89.8						

Conclusion

- Family of pure-transformer architectures for video
- Showed how to regularise models appropriately to train on smaller datasets. Detailed ablations in paper
- State-of-the-art results on 5 video datasets

- A Arnab *et al.* ViViT: A Video Vision Transformer. ICCV, 2021.
- [<u>Paper</u>], [<u>Code</u>]

Questions

- How can we model temporal dynamics more effectively?
- How can we make such models more efficient?
- How can we process and fuse multiple modalities?
- Can we train a single transformer model to perform multiple tasks across different modalities?

Questions

- How can we model temporal dynamics, and different modalities, more effectively?
 - Multiview Transformers for Video Recognition
- How can we make such models more efficient?
 - TokenLearner: What Can 8 Learned Tokens do for Images and Videos?
- Can we train a single transformer model to perform multiple tasks across different modalities?
 - PolyViT: Co-training Vision Transformers on Images, Video and Audio

Multiview Transformers for Video Recognition

Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, Cordelia Schmid

Google Research

Motivation

 Modelling inputs at multiple resolutions has been a central idea in Computer Vision, since handcrafted features (<u>Burt and Adelson 1987</u>,

Dalal and Triggs 2005, Lazebnik et al 2006).

- In space: detect objects of variable sizes
- In time: detect events of different durations
- How to model multiple spatio-temporal resolutions with transformers?

Multiview Transformers

- Model multiscale, temporal information
- Create different "views" of the input
- Process these views in parallel, with lateral connections between transformer layers.
- Final global encoder aggregates tokens from each view encoder.

Multiview Transformers

- Our naming convention example
- B/2 + S/4 + Ti/8
 - Three views
 - "Base" transformer with tubelet size of 16x2
 - "Small" transformer with tubelet size of 16x4
 - "Tiny" transformer with tubelet size of 16x8
- Single view is the same as a ViViT Factorised Encoder

How to fuse different views?

- Paper considers multiple alternatives.
- The best was using cross-attention from view *i+1* to view *i*, where views are ordered by increasing numbers of tokens.

How to fuse different views?

• The best was using cross-attention from view *i+1* to view *i*, where views are ordered by increasing numbers of tokens.

Model variants	Method	GFLOPs	MParams	Top-1
B/4		145	173	78.3
S/8	N/A	20	60	74.1
Ti/16		3	13	67.6
B/4+S/8+Ti/16	Ensemble	168	246	77.7
	Late fusion	187	306	80.6
	MLP	202	323	80.6
	Bottleneck	188	306	81.0
	CVA	195	314	81.1

What encoder should we use for each view?

- The encoder for each "view" does not have to be the same
- Better to use a deeper encoder for the view with more tokens.

Model variants	GFLOPs	MParams	Top-1
B/8+Ti/2	81	161	77.3
B/2+Ti/8	337	221	81.3
B/8+S/4+Ti/2	202	250	78.5
B/2+S/4+Ti/8	384	310	81.8
B/4+S/8+Ti/16	195	314	81.1

What encoder should we use for each view?

- The encoder for each "view" does not have to be the same
- Using deeper encoder for other views does not help

Model variants	GFLOPs	MParams	Top-1
B/4+S/8+Ti/16	195	314	81.1
B/4+B/8+B/16	324	759	81.1
B/2+Ti/8	337	221	81.3
B/2+B/8	448	465	81.5
B/2+S/4+Ti/8	384	310	81.8
B/2+B/4+B/8	637	751	81.7

More views are better than deeper models

 It is better, in terms of accuracy and computational cost, to add multiple views in parallel, than to use a deeper, single-view model (ViViT).

State-of-the-art results

(a) Kin	(a) Kinetics 400 (b) Kinetics 600				(d) Kine	tics 700)				
Method	Top 1	Top 5	Views	TFLOPs	Method	Тор	1 Top 5		Тор	1 T	op 5
TEA [40]	76.1	92.5	10×3	2.10	SlowFast R101-NL [23]	81.	3 95.1	VidTR-L [83]	70.2	2	_
TSM-ResNeXt-101 [41]	76.3	_	_	_	X3D-XL [22]	81.	95.5	SlowFast R101 [23]	71.0) 8	39.6
I3D NL [74]	77.7	93.3	10×3	10.77	TimeSformer-L [6]	82.		MoViNet-A6 [35]	72.3		-
VidTR-L [83]	79.1	93.9	10×3	10.53	MFormer-HR [51]	82.'		MTV-L	75.2	29	91.7
LGD-3D R101 [52]	79.4	94.4		_	ViViT-L FE [3]	82.		CoVeR (JFT-3B) [81]	79.8	2	_
SlowFast R101-NL [23]	79.8	93.9	10×3	7.02	MViT-B [21]	83.		MTV-H (JFT)	78.0		93.3
X3D-XXL [22]	80.4	94.6	10×3	5.82	MoViNet-A6 [<mark>35</mark>] MTV-B	84. 83.		MTV-H (WTS)	82.2		95.7
OmniSource [20]	80.5	94.4	-	-	МТV-В (320р)	83. 84.		MTV-H (WTS 280p)			96.2
TimeSformer-L [6]	80.7	94.7	1×3	7.14	мп v-b (320р)	04.	90.2				
MFormer-HR [51]	81.1	95.2	10×3	28.76	R3D-RS (WTS) [19]	84.		(e) Epic-Kitchens-	100 Top	1 accu	uracy
MViT-B [21]	81.2	95.1	3×3	4.10	ViViT-H [3] (JFT)	85.		Method	Action	Verb	Noun
MoViNet-A6 [35]	81.5	95.3	1 × 1	0.39	TokenLearner-L/10 [55] (J						
ViViT-L FE [3]	81.7	93.8	1×3	11.94	Florence [79] (FLD-900M)	·		ViViT-L FE [3]	44.0	66.4	56.8
MTV-B	81.8	95.0	4×3	4.79	CoVeR (JFT-3B) [81] MTV-L (JFT)	87.9 85.4		MFormer-HR [51] MoViNet-A6 [35]	44.5 47.7	67.0 72.2	58.5 57.3
MTV-B (320p)	82.4	95.2	4×3	11.16	MTV-H (JFT)	86.		MOVINEL-A0 [55] MTV-B	47.7	67.8	60.5
,		2012	1/10		MTV-H (WTS)	89.		MTV-B (320p)	48.6	68.0	63.1
Methods with web-scale pretrain	0				MTV-H (WTS 280p)	90.					
VATT-L [2] (HowTo100M)	82.1	95.5	4×3	29.80				MTV-B (WTS 280p)	50.5	69.9	63.9
ip-CSN-152 [69] (IG)	82.5	95.3	10×3	3.27	(c) Something-So	mothing		(f) Momor	ta in Ti	-	
R3D-RS (WTS) [19]	83.5	-	10×3	9.21		meuning	VZ	(f) Momer	us in 11	me	
OmniSource [20] (IG)	83.6	96.0	-	_	Method	Top 1	Top 5		Тор) 1 '	Top 5
ViViT-H [3] (JFT)	84.9	95.8	4×3	47.77	SlowFast R50 [23, 77]	61.7	_	AssembleNet-101 [56	1 34	2	62.7
TokenLearner-L/10 [55] (JFT)	85.4	96.3	4×3	48.91	TimeSformer-HR [6]	62.5	_	ViViT-L FE [3]	J 34 38		64.1
Florence [79] (FLD-900M)	86.5	97.3	4×3	_	VidTR [83]	63.0	_	MoViNet-A6 [35]			-
CoVeR (JFT-3B) [81]	87.2	_	1×3	_	ViViT-L FE [3]	65.9	89.9	MTV-L	40 41		_ 69.7
MTV-L (JFT)	84.3	96.3	4×3	18.05	MViT [21]	67.7	90.9				
MTV-H (JFT)	85.8	96.6	4×3	44.47	MFormer-L [51]	68.1	91.2	VATT-L (HT100M) [2	-		67.7
MTV-H (WTS)	89.1	98.2	4×3	44.47	MTV-B	67.6	90.1	MTV-H (JFT)	44		70.2
MTV-H (WTS 280p)	89.9	98.3	4×3	73.57	MTV-B (320p)	68.5	90.4	MTV-H (WTS) MTV-H (WTS 280p)	45		74.7 75.7

Multimodal MTV

- Recent extension of MTV to multiple modalities
- Each "view" is now a different modality
- Won the Epic-Kitchens action recognition challenge

Conclusion

- Processing multiple "views" in parallel allows us to achieve superior accuracy-speed trade-offs for video classification
- State-of-the-art results across 6 datasets.

- Poster session on Tuesday afternoon, 75b
- [<u>Paper</u>], [<u>Code</u>]

TokenLearner: What Can 8 Learned Tokens do for Images and Video

Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, Anelia Angelova

Google Research

Vision Transformers

[Dosovitskiy et al., ICLR 2021]

Motivation

- Transformers have quadratic complexity with respect to the number of tokens.
- Do we really need that many tokens and process them all at every layer?
- Can we not 'learn' to adaptively obtain much fewer tokens instead, and focus on processing them?

TokenLearner

TokenLearner

- TokenLearner has a form of spatial attention mechanism
- Given an image-like tensor, it
 - Weights each pixel differently
 - (i.e., focuses on a subset of pixels)
 - Summarizes them as a token.
- Could be applied to intermediate tensors
- Works well with a small number of tokens! Example: 8 or 16

TokenLearner

- The $\alpha(\cdot)$ function can be anything
- Examples
 - Conv layers
 - MLP
 - Attention (equivalent to Perceiver)
- When implementing, $\alpha_{1:S}(\cdot)$ is a single function with S output channels.

TokenLearner within ViT

- TokenLearner module inserted in the middle of Transformer architecture
- The computation after the TokenLearner module becomes negligible.

Where do we place TokenLearner?

- Interestingly, TokenLearner performs better, while being faster. Adaptiveness!
- Experiment using ViT-B, pretraining on JFT and doing ImageNet few-shot evaluation (same setting as original ViT paper).

ImageNet 5-shot accuracy

GLOPS

Scaling up TokenLearner

- By using TokenLearner, we can now
 - Process more initial tokens (use smaller patch sizes)
 - Use more transformer layers.
- Results using ViT-L with 512x512 inputs, and 16 learned tokens.

Base	# layers	TokenLearner	GFLOPS	ImageNet Top1
ViT L/16	24	-	363.1	87.35
ViT L/16	24	16-TL at 12	178.1	87.68
ViT L/16	24+11	16-TL at 12	186.8	87.47
ViT L/14	24+11	16-TL at 18	361.6	88.37

Scaling up TokenLearner

- By using TokenLearner, we can now
 - Process more initial tokens (use smaller patch sizes)
 - Use more transformer layers.
- Results using ViT-L with 512x512 inputs, and 16 learned tokens.

Method	# params.	ImageNet	ImageNet ReaL
BiT-L	928M	87.54	90.54
ViT-H/14	654M	88.55	90.72
ViT-G/14	1843M	90.45	90.81
TokenLearner L/10 (24+11)	460M	88.5	90.75
TokenLearner L/8 (24+11)	460M	88.87	91.05

TokenLearner on video

- Once again, we can use the higher efficiency of TokenLearner to process more tokens and achieve state-of-the-art results.
- Results from inserting TokenLearner into ViViT-L, at time of publication:

Conclusion

- There are lots of redundant tokens in images and video.
- We can learn to summarise them into a smaller subset of tokens, and process only those.
- With more efficient models, we can process more tokens to improve accuracy.

- M Ryoo et al. TokenLearner: What Can 8 Learned Tokens Do for Images and Video. *NeurIPS* 2021.
- [<u>Paper</u>], [<u>Code</u>], [<u>Blog</u>]

Google Research

PolyViT: Co-Training Vision Transformers on Images, Video and Audio

Valerii Likhosherstov*, Anurag Arnab*, Yi Tay, Mario Lucic, Krzysztof Choromanski, Mostafa Dehghani*

Google Research

Motivation

- Transformers are used for wide range of perception tasks
- Unified architecture, with shared parameters, for wide range of tasks?

PolyViT

- Only task-specific parameters: output linear head
- Tokenizer is modality-specific

PolyViT

- Model can process multiple tasks and modalities. Performs a single task at a time.
- Model is very parameter efficient. No gains in FLOPs or runtime.

How to co-train?

- When training, sample batches from a single task
 - Ablate different sampling schedules
- We can reuse training hyperparameters from a single-task baseline.
- No additional tuning necessary!
- Total number of training steps does not increase either

How to co-train?

		Image					leo	Audio		
Schedule	Im1K	C100	C10	Pets	R45	K400	MiT	MiniAS	VGG	
Task-by-task	0.3	0.8	11.7	1.9	2.0	0.3	0.3	1.6	37.2	
Accumulated	88.1	<u>90.0</u>	98.8	94.0	96.1	58.0	22.5	22.9	27.3	
Alternating	86.0	89.4	<u>99.2</u>	94.0	95.8	<u>69.7</u>	<u>30.0</u>	<u>31.4</u>	<u>44.6</u>	
Uniform	85.8	89.3	98.6	<u>94.6</u>	96.1	68.8	29.3	30.6	44.1	
Weighted	<u>86.9</u>	90.4	99.3	96.5	97.0	71.6	32.5	33.5	49.2	

How to solve 9 tasks across 3 modalities

					Image			Vic	leo	Aud	io
Model	#Models	#Params	Im1K	C100	C10	Pets	R45	K400	MiT	MiniAS	VGG
ViT-Im21K Linear probe	1	93M	80.7	76.2	91.7	91.8	81.7	64.0	25.5	11.3	15.7
Single-task baseline	9	773M	83.1	92.0	99.0	94.5	96.7	78.7	33.8	29.3	51.7
PolyViT, 1 modality	3	263M	84.3	93.3	99.1	95.1	96.4	80.2	36.5	36.7	51.6
PolyViT, $L_{adapt} = 0$	1	93M	83.1	91.2	99.0	95.0	96.7	77.5	33.2	32.3	50.6
PolyViT, $L_{adapt} = L/2$	1	178M	82.8	91.5	99.0	95.0	96.6	79.4	35.3	33.1	51.5

- Baselines
 - Train a model for each classification task \rightarrow lots of parameters
 - Linear probe on ImageNet-21K pretrained model → parameter-efficient

Google Research

- Co-train a model for each modality
 - Best accuracy whilst saving parameters
- Co-train a model across all tasks and modalities
 - 8.3x parameter reduction whilst losing maximum of 1.2% accuracy

Evaluating learned feature representations

			Image					Video			Audio	
Model	Finetuning	C-ch101	SUN397	Dmlab	DTD	KITTI	PCAM	Epic K.	S-S v2	K600	MiT-A	K400-A
ViT-Im21K pretrained	_	88.9	75.7	41.0	72.1	46.9	80.2	10.0	17.8	66.6	4.9	10.8
ViT	ImageNet-1K	91.0	79.3	45.6	71.9	52.5	80.7	12.2	18.5	67.9	5.3	12.0
PolyViT	Image tasks	90.7	80.0	45.2	72.5	53.8	81.2	12.1	17.9	67.9	5.3	11.9
ViViT	MiT	85.2	73.8	43.0	69.9	54.9	81.7	14.9	26.3	74.2	5.1	11.9
PolyViT	Video tasks	89.2	77.5	45.9	71.1	53.5	83.8	17.2	27.9	79.7	5.3	12.2
AST	VGGSound	29.0	7.6	29.8	34.7	45.1	79.5	2.9	4.6	10.6	9.7	21.7
PolyViT	Audio tasks	38.8	14.7	31.4	40.1	43.2	78.4	3.0	5.8	14.5	10.3	22.0
PolyViT $L_{adapt} = 0$	All	91.0	78.2	45.8	71.8	52.3	81.9	16.8	27.9	77.8	9.6	20.6
PolyViT $L_{adapt} = L/2$	All	90.7	77.8	45.1	72.1	52.5	82.3	18.0	28.7	79.4	9.9	21.1

- Linear evaluation (like self-supervised learning) on new datasets
- Multi-modal PolyViT generalizes to all new tasks.
- Image models transfer well to video and vice versa.
- Audio models do not generalize at all (and vice versa).

State-of-the-art by co-training on one modality

- Comparison to ViViT unfactorized model
- Largest improvements on smaller datasets (Kinetics 400)
 - Co-training has a regularising effect.

			Kinetics 400		Kinetics 600		Moments in Time	
Model	#Models	#Params	Top 1	Top 5	Top 1	Top 5	Top 1	Top 5
ViViT	3	913M	80.6	94.7	82.5	95.6	38.0	64.9
PolyViT	1	308M	82.4	95.0	82.9	95.5	38.6	65.5

State-of-the-art by co-training on one modality

- Comparison to MBT, audio-only
- Largest improvements on smaller datasets.
 - Co-training has a regularising effect.

			AudioSet	VGG	Sound
Model	#Models	#Params	mAP	Top 1	Top 5
MBT (audio-only)	2	172M	44.3	52.3	78.1
PolyViT	1	87M	44.5	55.1	80.4

Conclusion

- Co-training on one modality
 - Improves accuracy on all tasks. Has a regularising effect
- Co-training on multiple modalities and tasks
 - Even more parameter-efficient.
 - Learns universal features that are useful for a wide range of tasks.
- Co-training is simple and practical to do.
 - Does not require additional hyperparameter tuning over singletask baselines.
 Google Research

Questions?

- A Arnab et al. <u>ViViT: A Video Vision Transformer</u>. *ICCV* 2021.
- S Yan et al. <u>Multiview Transformers for Video Recognition</u>. *CVPR* 2022.
- M Ryoo et al. <u>TokenLearner: What Can 8 Learned Tokens Do for</u> <u>Images and Video</u>. *NeurIPS* 2021.
- V Likhosherstov et al. <u>PolyViT: Co-training Vision Transformers on</u> <u>Images, Video and Audio</u>. arXiv:2111.12993