Advanced Architectures for Vision

Anurag Arnab

Google DeepMind




Outline

* Supervised learning fundamentals

o Linear classifiers

o Perceptrons

o Convolutional Networks
* Transformers

o Transformer deep-dive

o Architectures for specialized tasks
* Connecting Vision and Language

o Image-text models

o Large Language Models

o Vision Language Models
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Linear Predictor

* We want to train a classifier that predicts

whether an image, x, contains a certain

class (ie "bicycle”)
* We can learn this function, F(x), from

images that have, or do not have, the

object. linear predictor

F(x) = (W,X)

Google DeepMind



Linear Predictor

* Inthe simplest case, the function is a linear

classifier, F(x).

O

O

& )
=

linear predictor

Images are high dimensional vectors.
Compute the dot product, between a
parameter vector, w, and image, x, to
compute a score.

The sign of F(x) is used as the Fx) = ()

prediction.
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Data Representations

* We can apply a linear classifier to vectors, x.

* However, we want to process images, representation
: . X » O(x) € R?
videos or other data that are not necessarily ®
vectors.
* Representation function, ¢(x), maps data possibly not a vector Avector
to vectors.
linear predictor non-linear predictor

* Non-linear classifier by applying linear

F(x) = (W, X) F(x) = (W, (I)(X))

predictor to non-linear representation

function.
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Meaningful Representations

* Representation should help a linear classifier representation
» Vector similarity

to perform classification. Semantic similarity (distance)

* Semantic similarity between data points

needs to be mapped to a vector similarity. embedding space R?

* Therefore, a good representation needs to: A e
congruous : —~q
o Beinvariant to nuisance factors palr . .
. . . y V
o Sensitive to semantic factors. _ b &
incongruous
pair ;

* How do we choose ¢?
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Perceptron

* One of, if not, the first neural networks by
Rosenblatt, 1957.

* The perceptron maps an input vector, x, to a
probability, y.
* Example: y is the probability that image x is a

bicycle.

X y=P(c=1]x,w)
input prediction
w,b
parameters
1 b
w
X1 1
w.
Xy 2 Z S y=P=1|x,w)
P WD
XD

sigmoid

weighing  summation activation
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https://bpb-us-e2.wpmucdn.com/websites.umass.edu/dist/a/27637/files/2016/03/rosenblatt-1957.pdf

Perceptron

* Computes the probability by computing a
weighted sum of the input with a learned
vector w, and then applying a non-linear
sigmoid activation function.

* Sigmoid makes the perceptron non-linear.

* Perceptron is effectively a linear classifier

with a sigmoid activation function.

y=P(=1|x,w)

prediction

input

w,b
parameters

b

xl 4!

W)
X S y=Plc=1|x,w)
2 =~ 2: > >O

X
D o . sigmoid
weighing  summation activation

-
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Sigmoid Function

Sigmoid function

* Non-linear activation function of the 1
perceptron.

1 0.75
* S(Z) T 14eZ

* Convertsreal values, z, in the range

S(@2)
o
o

(—o0, o) into probabilities in the range
(0,1).

0.25
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Training a Perceptron

* Minimise the cross entropy loss.
© L) = -3, yilog(faxsw)) + (1 — y;) log(f (xi; w)

! f

For positive labels, y = 1 For negative labels, y = 0
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Why Cross-Entropy Loss?

*  We want to maximise the likelihood, p(y; |x; ; w).

* If we assume we sample N examples in an independent and identically
distributed (lID) manner, then

* pIx)=TIl;pW: |x).

* And so to learn parameters, w, we want to maximise

* w=argmaxp(y |x;w) =[;p0; |x; ; w).

w
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Why Cross-Entropy Loss?

* w=argmaxp(y |x;w) =[[;p(y; |x; ; w).

w

* If we take the logarithm, we obtain

* w=argmaxY;logp(y; |x;; w).
w

* Since we like minimizing losses, we can minimise the negative of the log-likelihood

°* w= argmax—,;logp(y; |x;;w).
w
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Multi-Class Perceptron

* We can combine multiple perceptrons to predict more than one class.

* Each perceptron computes a score, x§2> for a class hypothesisofc =1, 2, ..., C.
o Subscript denotes the class, superscript the layer index.
* The vector of scores, x?, is mapped to a vector of probabilities, x(), with a softmax

function.

O x=P(y=1|x;w,b)

O x =P(y=2|x;w,b)
Google DeepMind



Softmax

* Maps a vector of scores to probabilities.

eZi
Zj e’
* Inthe binary case, the softmax is the same as the sigmoid.

* S(z) =
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Softmax

* Maps a vector of scores to probabilities.

eZi
-
e’
e

* S(z) =

* Inthe binary case, the softmax is the same as the sigmoid.

—’<)\ O x13=P(y=1|X,W,b)

0 ——«C O x =Py =2|x,w,b)
e’ e 2 1
T eZ4e0 TeZ T 14e2
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Softmax

* Maps a vector of scores to probabilities.

eZi
-
e’
e

* Inthe binary case, the softmax is the same as the sigmoid.

* S(z) =

— x3=P =1X,W,b
><2—>o\ O xj=P@y=1]| )

14— O x =Py =2|x,w,b)

x1 = — - —
eZ/2 + g-2/2 1+ e-Z Google DeepMind



Multilayer Perceptron

* We can chain multiple perceptrons together, resulting in a deep neural network.
* Depth refers to the fact that the resulting function decomposes as a long, "deep”
chain of simpler perceptrons.

* 2-layer MLP is shown here input

neuron 1 (1 of layer 1)

neuron 2 (2 of layer 1)

i neuron 3 (1 of layer 2)

EREIat
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Convolutional Networks

* Architectures designed specifically for images, operating on 2D (images) or 3D
(video) grids.
* ViewdataasaB x H XW XC grid, where B is the batch size, H the height, W the

width and C the number of channels.
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Biological Motivation s

from brain
Recording electrode ——»

Visual area
of brain

* Hubel & Wiesel conducted seminal experiments in

understanding the visual cortex of mammails.

* In cats and monkeys, they found the existence of - xmmus | g A

neurons in the brain that activate (by measuring with

implanted electrodes) to specific orientations and

locations of a visual stimulus.

* Therefore, these neurons behave like local, translation-

invariant operators.

* They later won the Nobel Prize in Physiology and
Medicine in 1981.

* Their work inspired the Neurocognitron architecture
which may be the first CNN (1980).
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/pdf/jphysiol01247-0121.pdf
https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

Convolution

* Alinear filter, f, computes the weighted summation

of a window of the input, x.

* Key properties

O

Linearity: Operation is linear in the input and the
filter parameters.
Locality: Only looks at a small window of the

data.

Translation invariance: All windows are

processed using the same filter weights

Google DeepMind



Convolution

* Alinear filter, f, computes the weighted summation
of a window of the input, x.
* Key properties
o Linearity: Operation is linear in the input and the
filter parameters.
o Locality: Only looks at a small window of the
data.
o Translation invariance: All windows are
processed using the same filter weights.
* We use multiple filters — one output channel per filter.
o Intuitively, each filter activates for a certain

pattern in the input.
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Convolutionin 1D

Convolve a filter (in green) with input (in grey) to get the output (in yellow).

2

-1 1

Stride = 1

Stride =3
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Convolution

* Soiftheinput, x, hasshape N X H x W X C;,
* Thefilter, f, has shape, k;, X k,, X Ciy, X Cout oy f;
* The output y, has shape (with stride 1)

Google DeepMind




Convolution

* Soiftheinput, x, hasshape N X H x W X C;,
* Thefilter, f, has shape, k;, X k,, X Ciy, X Cout oy f;
* The output y, has shape

NXH —k,—1xXW —k, —1XCyyut
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Convolutionin 1D

* The output size decreases progressively

Google DeepMind



Padding

* Padding extends a tensor, x, with a border filled with zeros.

* Typically used to retain the original input dimensions after each operation.

padding

Google DeepMind



Striding

Striding moves the filter S pixels at a time.

It produces smaller output volumes. And increases the receptive field of subsequent

operations.

down-
sampling
S

L

Google DeepMind



Striding

* We can also think of padding and striding as layers that we do before and after a standard

convolution layer.

padding

down-
sampling —v-
S

Google DeepMind



Convolution Example

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
° . . x[2:,:,0] w0[:,:,0 wl[:,:,0] o[:,:,0]
What is the padding? 9 To 4o To 0 0 0 o W E 2] 1
. . . ot 1211 0 2 O -1J|1 |0 1 1 -1 -4 -10 4
* Filter dimensions? =2 2 0 o = =18 FiR [0 1T
. 0O 1 1 1 1 0 O wO[:,:,1 wlfz:,:,1] o[:,:,1]
[ J
Input size? B B B o e aE ) 510
“1jfo |1 O | i 1 0 6
. (U3 LR RIS F2 B 0
[ J
Output size? — T 110 2 1 0
0[:,+,2 wlf[:,:,2]
xpry:,1 =
* Demo here. Rk T ol (= 12
o 1o o ) 1 [r|-1 .11 -1
0 @rl 1 0 10 |11 -1 -1 -1
o Bias h9(1x1x1) Bias bl (1x1x1)
01 2 20 2 0 bo{:,:,0] bl[:,:,0]
ol i 2 1 J
0 0 0 0 0
:,:,2] toggle movement
0o o 40 0 00
0 ||L12 072 0
1 {2 1 0 O
0 0 1 1 1 2 0
(NN 125 RIS BISN BISN BINN ()
0 0 0 2 0 0
0 0 0 0 0 0 O


https://cs231n.github.io/convolutional-networks/

Receptive Field

* How many input pixels are considered fo [T T T TTTTI I T TT]
Convolution
by a cell at a particular feature map of KernelSize (k) 3 S—
Padding (p,, q,): 1 =g
the network. ; ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Stride (s,): 2 E——
ReLU

* Try out the demo here.

Kernel Size (k,): 1

Padding (p,, d,): 0

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Stride (s): 1
f

Convolution
Kernel Size (k3): 1 .

Padding (pg, 93): 0 @

\ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Stride (s;): 1 @

Max Pooling

Kernel Size (k,): 3 Sn—()
Padding (g, d4): 1 oam—g

4
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https://distill.pub/2019/computing-receptive-fields/

Receptive Field

* How many input pixels are considered
by a cell at a particular feature map of
the network.

* Try out the demo here.

fo

Convolution

Kernel Size (k,): 3 Sn——
Padding (p;, a): 1 -
Stride (s,): 2 ————

RelLU
Kernel Size (kp): 1
Padding (p,, d,): 0

Stride (s,): 1

Convolution
Kernel Size (k3): 1 .
Padding (pj, a3): 0 ‘
stride (s;): 1 @

Max Pooling

Kernel Size (k): 3 L
Padding (p,, q,): 1 Se—
Stride (s4): 2 L
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https://distill.pub/2019/computing-receptive-fields/

Receptive Field

* How many input pixels are considered
by a cell at a particular feature map of
the network.

* Try out the demo here.

* What do we want to be at the end of

the network?

fo

Convolution

Kernel Size (ky): 3 n—()
Padding (p;, a): 1 -

Stride (s,): 2 ————

RelLU
Kernel Size (kp): 1
Padding (p,, d,): 0

Stride (s,): 1

Convolution
Kernel Size (k3): 1 .
Padding (pj, a3): 0 ‘
stride (s;): 1 @

Max Pooling

Kernel Size (k): 3 L
Padding (p,, q,): 1 Se—
Stride (s4): 2 L
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https://distill.pub/2019/computing-receptive-fields/

Receptive Field

* How many input pixels are considered
by a cell at a particular feature map of
the network.

* Try out the demo here.

* What do we want to be at the end of
the network?

o For classification, should be the

entire input.

fo

Convolution

Kernel Size (ky): 3 n—()
Padding (p;, a): 1 -

Stride (s,): 2 ————

RelLU
Kernel Size (kp): 1
Padding (p,, d,): 0

Stride (s,): 1

Convolution
Kernel Size (k3): 1 .
Padding (pj, a3): 0 ‘
stride (s;): 1 @

Max Pooling

Kernel Size (k): 3 L
Padding (p,, q,): 1 Se—
Stride (s4): 2 L
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https://distill.pub/2019/computing-receptive-fields/

Deep Convolutional Neural Network

* Along sequence of layers!

* Typically alternate convolution, non-
linear activation (ie ReLU).

* Perform pooling and/or striding to
increase the receptive field, and
decrease resolution.

* Usually decrease spatial dimensions,
increase channel dimensions through the

network

downsampling

\@ i

more channels

Google DeepMind



AlexNet

* Started the Deep Learning revolution in Computer Vision by winning the ImageNet

challenge in 2012

o The Top-5 error was 16%, compared to the runner-up with 26% error.

3x244 X244 [

K filters number 96

F filter size 1
S filter stride 4
P filter padding 0
F’ pooling size 3

S’ pooling stride 2
P’ pooling padding 1

'\+‘£\ «ﬁt\ ‘b+\{b \(b+\’5 +° \+\ \+\
v 4 " + ,° o ot
& 9 & & P RS RS 1000 x 1 x 1
. . vector of C
» C2 > C3 » Ca ¥ Cs > fs g f7 g fs > scores
256 384 384 256 4096 4096 4096
5 3 3 3 6 1 1
1 1 1 1 1 1 1
2 1 1 1 0 0 0
3 - - 3 -
2 2
0 0

Google DeepMind


https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://www.image-net.org/challenges/LSVRC/2014/
http://www.image-net.org/challenges/LSVRC/2014/

Residual Networks

Standard deep networks can become difficult to optimize
when they become deep.

Residual connections enable training very deep networks
(even 1000 layers) in a stable manner.

Intuition: Adding additional layers with identical connections
to an existing network should not degrade performance; the
weight layers can be O and the original function is

maintained.

Google DeepMind


https://arxiv.org/pdf/1512.03385

Residual Networks

* Principle of residual connections has been employed in subsequent architectures (both for

more advanced CNNs, and other architectures like transformers).

AlexNet e e

ResNet-50 m- m g

Google DeepMind



Questions?
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Transformers \
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Outline

* Deep dive of transformers and self-attention

* Transformers in Computer Vision.

Google DeepMind



Context

Image credit
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https://www.instagram.com/mensweardog/?hl=en

Context

Image credit
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https://www.instagram.com/mensweardog/?hl=en

Context

Image credit
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https://www.instagram.com/mensweardog/?hl=en

Context

Image credit
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https://www.instagram.com/mensweardog/?hl=en

Context

*  “The animal didn't cross the street because it was too tired”
* Whatis “it"?

Layer:| 5 §|Attention:| Input - Input s

|
The_ The_
animal_ animal_
didn_ didn_
i t
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ > it
was_ was_
too_ too_
tire tire
d d

Try more examples here

Go

gle DeepMind


https://colab.sandbox.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Attention and Transformers

* Attention is a method of gathering relevant contextual information
* The transformer is a neural network layer that relies on attention
* Infact, state-of-the-art models across various domains consist almost entirely of

transformer layers.

L

( ~\
Add & Norm

Feed
Forward

A

 —

Add & Norm

Multi-Head
Attention

1t

. J
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What is Attention?
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High-Level Overview

* Use machine translation as initial example, as this is what Transformers were initially

developed for

OUTDUT | am a student

4
o 1 %
[ ENCODER J [ DECODER J
T T
( ENCODER J [ DECODER )
Ly ry
( ENCODER J [ DECODER J
T )y
( ENCODER ] [ DECODER )
T Y
( ENCODER ] [ DECODER )
) Y
( ENCODER ) [ DECODER ]
. A %,

INPUT | Je suis étudiant

Figure credit for this, and next few slides~
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https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

High-Level Overview

Embed input into tokens (fixed dimensional vector)

x x: T xs T
Je suis étudiant
Process with encoder layer
ENCODER 4 4 4
( 1 1 1 \
Feed Forward
f f f
= [ 2 [ 2 [
t t t
[ Self-Attention ]
= : "
X1 D:ED le:l:]:]:l X3 DIE
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Self-Attention in Detail

* Given an input sequence, X.
* Project to Query, Key, Values using linear transforms.
* Head output = Softmax(QKT)V

Google DeepMind



Self-Attention in Detail

* Given an input sequence, X
* Project to Queries, Keys and Values using linear transforms.

o Q=WIiX, K=WkX, Vv =w"X

Input Thinking Machines

Embedding x x. [

Queries q1 D:D qu:]] we
Keys kT ke[ 1] WK
Values vil ] v [ ] Wv

Google DeepMind



Self-Attention in Detail

* Given an input sequence, X
* Project to Queries, Keys and Values using linear transforms.
o Softmax(QKT)

Input Thinking Machines
Embedding x: x:
Queries q [T g [T
Keys ki [T k2 [
Values vi LT v LT
Score qr e ki= gi* ko =

Google DeepMind



Self-Attention in Detail

* Project to Queries, Keys and Values using linear transforms.

* Calculate a score: For each query, how relevant are all the other words?

Input Thinking Machines
Embedding LT T xx [T T
Queries qi D:D q2 D:I:‘
Keys ki [T ke [T T1]
Values V1 ED:‘ V2 D:l:’
Score qi e ki= qi e ko =
Divide by 8 (/d; )

Softmax

Google DeepMind



Self-Attention in Detail

* Project to Queries, Keys and Values using
linear transforms.
* Calculate a score
* Representation of each query token is
attention-weighted sum of values.
o Z = Softmax(QKT)V

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 (Vdj )
Softmax

Softmax
X
Value

Sum

Thinking

Machines

Google DeepMind
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Self-Attention in Detail

X wa Q
nt dl nt
d L d;
X
X Al Vv

: As a Matrix
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Self-Attention in Detail: As a Matrix

X wo Q v
e : * dy - e softmax( )
: d; dz Vi
X
d,
X WV Vv

Google DeepMind



Self-Attention in Detail: Multiple Heads

1) This is our 2) We embed
input sentence* each word*

Thinking
Machines

*1n all encoders other than #0,

we don’t need embedding.

We start directly with the output
of the encoder right below this one

3) Split into 8 heads.
We multiply X or
with weight matrices Q/K/V matric

4) Calculate attention
using the resulting

es
WoQ
1 WoK Qo
W,V F:':ﬂ KQ/
0
W@
4 ‘W1VTI . Q1K
1 1
F Vi
w-Q
=t Q;
7 K7
F V7

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix to
produce the output of the layer

Go

gle DeepMind



Self-Attention in Detail

*  Where did the Vd, come from

* Temperature of the softmax to control its “peakiness”

06

05

04

03

02

01

00

SOETMAX WITHOUT TEMPERATURE. (T=()

INCREASE In ENTROPY

SOFTMAX WITH  TEMPERATURE.
eZ;/T

= CZz.'/r
d

Temperature: 0.7

014
012
010
008
006
004

002

000

WITH INCREASE N T

MorE. ENTROEY
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Self-Attention in Detail

*  Where did the Vd, come from

* Temperature of the softmax to control its “peakiness”

Temperature: 0.1

06

05

04 -

0.1

02

0.1

op
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Positional Embeddings

* Self-attention is permutation invariant!
o Sayinputis [x1, x2, x3]. And output is y1
o Ifinputis [x1, x3, x2]. Output is ...

Google DeepMind



Positional Embeddings

* Self-attention is permutation invariant!
o Sayinputis [x1, x2, x3]. And output is y1
o Ifinputis [x1, x3, x2]. Output is y1
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Positional Embeddings

* Self-attention is permutation invariant!
o Sayinputis [x1, x2, x3]. And output is y1
o Ifinputis [x1, x3, x2]. Output is y1

* But what if the ordering of the input vectors conveys information as well?
o The position of a word in a sentence matters!

12244

o ““The man ate a fish” = “The fish ate a man

Google DeepMind



Positional Embeddings

* Self-attention is permutation invariant!
* Learned positional embedding
o Attheinput, add a learned vector to each token

o Representation of the token changes depending on its input position

Google DeepMind



Positional Embeddings

* Self-attention is permutation invariant!

* Sinusoidal positional embedding

sin(—L—) if§ =28
PE(i, §) = — ,
—L ) if6=28+1

Depth

120

Google DeepMind
Figure credit


https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Putting it all together

* Original Transformer of Vaswani et al. Attention is all You Need

Output
Probabilities

Computational
and Memory
Complexity
9 (Add & Norm ]
O(n*)
WliHiead
([ Matvul_] - (EACH RO Cross-Attention
XN
Softmax . | Feed Forward
(Seae ) ([ scaled Dot-Product Attention ]—] Nx
/—I Add & Norm
m Linear Linear Linear Multi-Head Multi-Head
Self-Attention
Q K Vv K v Q b :
@—/ —l
Positional € a Positional
Embedding )‘_® Embedding
Input Embedding Input Embedding
inputs inputs

Figure 1: Architecture of the standard Transformer (Vaswani et al., 2017)
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https://arxiv.org/abs/1706.03762

Advantages of Transformers

Great for modelling context

o Each token can have access to all other tokens in the sequence

o Whatis the receptive field of a transformer? Compared to a CNN?
* A generic architecture:

o Operates on any inputs that can be tokenized!

Parallelizable

Empirically shown to perform excellently at scale

Google DeepMind



Transformers at Scale

* Keep performing better with deeper models and more data

* Scaling Laws for Neural Language Models

Test Loss
w 'S S B |

L= (Cmin/2.3 + 108)—0-050

4.2

3.9

3.6

3.3

3.0

2.7

—— L=(D/5.4- 1013)—0.095

5.6
4.8

4.0

3.2

2.4

2 ; = v .
107° 1077 1075 1073 107!
Compute

PF-days, non-embedding

10!

108 10°

Dataset Size
tokens

—— L=(N/8.8+1013)~0:076
165 1b7 169
Parameters

non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.
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https://arxiv.org/pdf/2001.08361.pdf

Weaknesses of Transformers

Q 5*“3‘\»_1-
* Quadratic complexity '}
o Each token attends to every other token =
softmax
o N tokens — N? operations i

o Prohibitive as the number of tokens increases!

* Most powerful language models are extremely expensive

Large body of work on more efficient transformers.

o Good survey paper

Transformers can overfit easily on smaller datasets

Google DeepMind


https://arxiv.org/abs/2009.06732

Weaknesses of Transformers

* Quadratic complexity

o Each token attends to every other token

Charformer
(rayetal, 2021)

Perceiver TokenLearner
(Jsegle etal 2021 ®vooetal, 2021)

Transformer-XL
(Dai etal, 2019)

o N tokens — N? operations

Nystromformer
(ong etal, 2019)

Recurrefce b Memo"YI/. s
Compressive ownsampling ...z

Transformer/ - set Transformer
(eeetal,2019)

Performer \
(Choromanskiet a, . 2020)

Low-Rank Transformer
Winata etal, 2020)

o Prohibitive as the number of tokens

N Clusterformer

Routing (Wang et al, 2020)

Transformer
(Royetal, 2020)

Funnel Poolingformer
Transformer etal, 2021)
Osi et l 2020)

increases!

Reformer
(Kiaev etal, 2020)

ngformer Swin
(Beliagyetal,2020)  Transformer
(Uuetal, 2020)

* Most powerful language models are extremely
omer LOW RANK/ [ g0g shart

Linf
ez Kernels

Transformer
@nuetal, 2021)

Fixed/Factorized/ """

i .

Adaptive

expensive d U EsEE
Random Feature Attention iy . Transformer
(Geosta 2021) (orete: 20209/ o ckwise Transformer (Hffm';‘iﬁm (lw,?,ﬂ"a.[ 3;,10) (EETCOCILES)

(Quetal, 2019)
M Linear Sparse
® L b d f k ff t T f Sparse Transformer p

arge body of work on more efficien B VAR .. ‘
(Parmar et al, 2018) Tromefeiay Product Key

Axial Transformer « al,2021) Memory

(Hoatal, 2019) (Lample etal, 2019)

transformers.

Scaling Transformer
Waszcauretal, 2021)

o Good survey paper

* Transformers can overfit easily on smaller datasets
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https://arxiv.org/abs/2009.06732

Transformers and Computer Vision
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Transformers and Computer Vision

®* CNNs used to be the architecture of choice in Vision

* Transformers were quite established as the architecture of choice in NLP

* Numerous attempts to incorporate self-attention into CNNs:
Wang CVPR 2018, Bello ICCV 2019, Huang ICCV 2019, Carion ECCV 2020

O

* Or toreplace convolutions entirely with self-attention

O

Parmar ICML 2018, Ramachandran NeurlPS 2019

I

backbone ||

|

set of image featuresi!

encoder

)

]

|

|

1 !

“en |

|

|

]

] |
! transformer

encoder



https://arxiv.org/abs/1711.07971
https://arxiv.org/pdf/1904.09925.pdf
https://arxiv.org/abs/1811.11721
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/1802.05751
https://arxiv.org/pdf/1906.05909.pdf

Vision Transformers

*  Anlmageis Worth 16x16 Words

*  "Tokenize” an image by splitting it into patches. Pass tokens through a transformer.

MLP
Head \

Transformer Encoder ]
Pmm“ﬁﬁﬁﬁﬁﬁéﬁié

* Extra learnable
[ Linear Projection of Flattened Patches

[class] embedding
L
. ‘ ‘ .irl‘;! E
Limrs
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https://arxiv.org/abs/2010.11929

Vision Transformers

*  Anlmageis Worth 16x16 Words

* "Tokenize” an image by splitting it into patches. Pass tokens through a transformer.

* Same as convolution where the stride is the same as the filter size.

Google DeepMind


https://arxiv.org/abs/2010.11929

Vision Transformer Models

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

ity
LRI

E W E Notation e.g. VIT-L/16

Google DeepMind



An Obvious Idea?

* Might appear obvious to replace CNN entirely with a transformer.

* Does not really work well at standard, ImageNet setting

* Larger models, ie ViT-L/16 are actually worse than smaller ones, ie ViT-B/16.

90 1

ImageNet Topl Accuracy [%]

70

o0 o0
-} ()
T B R T R

~
o)

Shaded grey area are

the results obtained

by CNNs of different

sizes

BiT ViT-L/32
| ViT-B/32 ViT-L/16

ViT-B/16 ViT-H/14

Imag:eNet
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Vision Transformers are effective at scale

Transformers have less inductive biases then Convolutional Networks (ie translational

equivariance)

So they need more data to train

O
o

o]
|91

ImageNet Topl Accuracy [%]
~ o0
() ]

70 A

&
v i
BiT ViT-L/32
I ViT-B/32 ViT-L/16
ViT-B/16 ViT-H/14
ImageNet ImageNet-21k JFT-300M

Pre-training dataset
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Vision Transformers are effective at scale

® Transformers, are however, able to take advantage of large-scale data better than CNNs
can

® And are more compute-efficient too in terms of computation to reach accuracy.

Average-5
S o -
— 95+ ©
>
o
=
Q
8 o
e
&
w2
o)
E ® Transformer (ViT)
901 ResNet (BiT)
Hybrid
102 5 T0° Google DeepMind

Pre-training compute (ExaFLOPs)



High Resolution Data

Vision Transformers still have issue
with quadratic complexity with respect
to the number of tokens.

Becomes a problem when we have
high resolution images.

Need to process images at high
resolution for tasks like object

detection and semantic segmentation.

CAT
Image classification. Process at

224 x 224. ? tokens!

| Objet dete

ction. Process
1024 x 1024. ? tokens!

Google DeepMind
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High Resolution Data

Vision Transformers still have issue
with quadratic complexity with respect
to the number of tokens.

Becomes a problem when we have
high resolution images.

Need to process images at high
resolution for tasks like object

detection and semantic segmentation.

CAT
Image classification. Process at

224 x 224. 196 tokens!

| Objet dete

ction. Process
1024 x 1024. 4096 tokens!
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High Resolution Data

Vision Transformers still have issue
with quadratic complexity with respect
to the number of tokens.

Becomes a problem when we have
high resolution images.

Need to process images at high
resolution for tasks like object

detection and semantic segmentation.

CAT
Image classification. Process at

224 x 224. 196 tokens! 20 GFLOPs

Object detection. Process at
1024 x 1024. 4096 tokens! 7

GFLOPs Google DeepMind
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High Resolution Data

Vision Transformers still have issue
with quadratic complexity with respect
to the number of tokens.

Becomes a problem when we have
high resolution images.

Need to process images at high
resolution for tasks like object

detection and semantic segmentation.

CAT
Image classification. Process at

224 x 224. 196 tokens! 20 GFLOPs

Object detection. rocess at
1024 x 1024. 4096 tokens! 8734
GFLOPs Google DeepMind
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Swin Transformer

* Process alternating sliding windows of tokens at a time.
* Substantially reduces the computation required for high resolution data.
* Makes a transformer more “CNN”"-like.

* Excels at tasks like object detection and segmentation.

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Google DeepMind


https://arxiv.org/pdf/2103.14030

Hierarchical Pooling

* CNNs use pooling throughout the network to reduce spatial dimensions and increase the
“receptive field”

* Intransformers, we can use them to reduce the number of tokens and increase the
efficiency of the model.

* Examples: Multiscale ViT, Pyramid ViT. Particularly suited for high-resolution tasks.

Google DeepMind


https://arxiv.org/pdf/2104.11227
https://arxiv.org/pdf/2102.12122

Video

* Video data is also computationally very demanding due to the additional “time” dimension.
* Can tokenize data in the same way as images, by extending “patches” to “tubelets” in time
(ie ViViT).

8

8
™)

Google DeepMind


https://arxiv.org/pdf/2103.15691

Temporal + Token
Embedding

Video

* Manage complexity of the data by alternating attention between spatial and temporal axes

in various manners (ViViT, Timesformer).

* Sliding windows in 3D (Video Swin)

Temporal Transformer Encoder Class
Spatial Transformer Spatial Transformer Spatial Transformer
Encoder Encoder Encoder

- .iu : ..u]

Embed to tokens

@ [
=
N o

Positional + Token
Embedd'ng

REF ENEE BNE=
HEEHERE BEEE
% RN BN

A

ENEENEEE RREE

Axial Attention

(rewat Google DeepMind


https://arxiv.org/pdf/2103.15691
https://arxiv.org/pdf/2102.05095
https://arxiv.org/pdf/2106.13230

Are Transformers All You Need?

* Vision Transformers outperform CNNs at large scale (model size and dataset size).
* Vision transformers need more data as they have fewer inductive biases?

* Are there other architectures besides CNNs and transformers that we could be using?

Google DeepMind



MLP-Mixers

* Transformer encoder block has two main
operations:
o Multi-head attention
o MLP/Feedforward
*  What if we use only MLPs?
* MLP-Mixer: Alternate between MLPs on the

"channel” and “token” axes

Transformer Encoder

A
L[x MLP
4
[ Norm ]

i

Attention

11 4

Norm

[ Multi-Head

W S

Embedded
Patches

Fully-connected

I
I
I
I
I
I GELU
|
I
I
|

l

Fully-connected
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https://arxiv.org/pdf/2105.01601

MLP-Mixers

* Competitive with Vision Transformers and CNNs.

* Again, only effective at larger scales

ImNet RealL Avg5 VTAB-lk Throughput TPUv3
top-1  top-1  top-1 19 tasks  img/sec/core  core-days
Pre-trained on ImageNet-21k (public)
e HaloNet [51] 85.8 — — — 120 0.10k
© Mixer-L/16 84.15 87.86 9391 74.95 105 0.41k
o ViT-L/16 [14] 8530 88.62 94.39 72.72 32 0.18k
BiT-R152x4 [22] 85.39 — 94.04 70.64 26 0.94k
Pre-trained on JFT-300M (proprietary)
NFNet-F4+ [7] 89.2 — — — 46 1.86k
o Mixer-H/14 87.94 90.18 95.71 75.33 40 1.01k
BiT-R152x4 [22] 87.54 90.54 95.33 76.29 26 9.90k
e ViT-H/14 [14] 88.55 90.72 95.97 77.63 15 2.30k
Pre-trained on unlabelled or weakly labelled data (proprietary)
MPL [34] 90.0 91.12 — — — 20.48k
ALIGN [21] 88.64 — — 79.99 15 14.82k

Google DeepMind



ConvNeXt

* Redesign ConvNet using modern “tricks” from

transformers
ResNet Block ConvNeXt Block
o RelLU->GelU
B h N L N 256-d 96-d
o atch Norm -> Layer Norm Y L2
y l 1x1, 64 l d7x7, 96 I
o Fewer activation functions and normalization BN, ReLU N
Y Y
o Further regularization during training (ie label 3x3,64 | 1x1, 384
smoothing mixup, data augmentation) g e oo
. . . 1x1, 256 1x1, 96
* Performs on-par with vision transformers. BNj :]
Y Y
i H > \f\
* Good at high-resolution tasks. '(P >
VReLU ‘r

Google DeepMind


https://arxiv.org/pdf/2201.03545

ConvNeXt

* Redesign ConvNet using modern “tricks” from
transformers

o RelU ->GelU Semantic segmentation on ADE20K

backbone input crop. mloU #param. FLOPs

o Batch Norm -> Layer Norm TmageNet- 1K pre-trained
o _ o Swin-T 5122 458 60M 945G
o Fewer activation functions and normalization o ConvNeXt-T 5122 467 60M 939G
Swin-S 5122 495 8IM  1038G
o Further regularization during training (ie label o ConvNeXt-S 5122 496 82M  1027G
Swin-B 5122 49.7 12IM  1188G
smoothing mixup, data augmentation) o ConyNeXt-B 512° 499 122M  1170G

ImageNet-22K pre-trained

* Performs on-par with vision transformers. Swin-B? 640° 5.7 12IM  1841G
e ConvNeXt-B* 640> 53.1 122M  1828G
Swin-L? 6402 535 234M  2468G

* Goodat hlgh_reSOIUtlon tasks. o ConvNeXt-L* 640° 53.7 235M 2458G

o ConvNeXt-XL* 640° 54.0 391IM 3335G

Google DeepMind



So Why Transformers?

* Can handle variable resolution inputs

o Videos or images of different sizes.

o Problematic for a Mixer since “token mixing” depends on the number of tokens.
* Architecture that works well for multiple modalities

o Language, images, video, audio ...

o Any data that can be tokenized can be processed by a transformer.

PolyViT Tokenizer B B PolyViT Encoder

Task #2
Input

Task #3
Input

i

Task #4 . [
Input

Task #5
Input

L# Joke Jawilojsuel]

24 Joke Jowiojsuel |
TJ# Joke Jswloysuel]

/‘

Task #6
Input

Audio Tokenizer
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Questions?
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Connecting Vision and\
Language
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Discriminative Image-Text Modelling

* CLIP performs contrastive pretraining of image and text.
* Scrapes a dataset of image-text pairs from the web.
* Pretraining loss function encourages the model to match a feature representations from

an image to the representation from text.

Pepper the \‘
aussie pup —> Er;[:e(JX(:er l l l l
} T, | T, | T3 w | TN
Image
Encoder

—>| I] Il'T] ]l'TZ I]'T3 Il'TN
‘ —> b LT | LT | Ty . | LTy
> L LTy | 3Ty | 3Ty | . | I3Ty

Google DeepMind
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CLIP Architecture and Loss

* CLIP architecture is simply a vision encoder and a text encoder
o Both are transformers in practice.
* Contrastive loss encourages a high score for the correct image-text pair. And a low score
for all other examples in the batch

o What do we need to be careful of here?

Image Text

. exp(/ (@) g(@)
ra exp(f () "9(¥)) + L menexp(f (=) T9(y"))

Positive Image-Text pair Negative Image-Text pairs

Image Text
encoder encoder

Google DeepMind



CLIP Architecture and Loss

CLIP architecture is simply a vision encoder and a text encoder

o Both are transformers in practice.

Contrastive loss encourages a high score for the correct image-text pair. And a low score
for all other examples in the batch
o The objective can be too easy if there are no other “hard examples” in the batch.

o Typically means that we need a large batch size during training in order to have a

higher chance of having “hard examples”

o ltis also possible to construct batches in the data-loader to be “harder”. But this

does not scale well to large-scale training.

Google DeepMind



Joint Image-Text Embedding

* Images and text are embedded into a
common latent space.

* This facilitates many different

applications

Eiffel Tower
Text encoder [<— at night
9O .. g
Text encoder
Feature space T

‘ (normalised) .

.. . Pancakes with fruits




Retrieval: Image- and Video Search

* Image-Text pretraining enables text-to-image search

* We embed a text query, and I2-normalize it.

* We construct an “index” of images, by precomputed computing their I2-normalized
embeddings.

* We then find the the image which best matches the text query

o “Best matches” means the lowest distance

/ highest inner product

——— Text encoder |«

Image encoder -
g o

o Why are the two equivalent?

coder
& L
(normal lised) @ T
9

\»...-.--‘.___

m’”’% Dog with frisbee




Text to Image Search

* Image-Text pretraining enables text-to-image search.
* Demo/code for VGG Wise.

que ‘ penguin with wings raised @ Q ’

Search completed in 0.5 seconds of 35,862,382 Wikimedia images

1-50 of top 1,000 retrieved images @ 2 3 4 5 20 >

Google DeepMind


https://gitlab.com/vgg/wise/wise

Search between modalities

* This approach can be generalized to any modalities for which we can compute

embeddings [ImageBind].
* And we can use transformers to produce embeddings for different modalities.

Audio Images & Videos Depth Text

“A fire crackles while a pan of food is frying on

))) the fire
v “Fire is crackling then wind starts blowing.”
Crackle of a Fire s ’ “Firewood crackles then music...”
P » D 575 . e *“A baby is crying while a toddler is laughing.”
))) - : ’ ¥ 3 “A baby is laughing while an adult is laughing.”
Baby Cooing A baby laughs and something...

Google DeepMind


https://arxiv.org/pdf/2305.05665

Zero-Shot Recognition

* We can also easily perform “zero-shot” classification, by comparing the image embedding,
to text embeddings for different class names.
* Allows us to build classifiers without any training datal

* Try the demo for Locked-Image Tuning.

Duplicate @ Compute ¢

0.6% an apple
0.1% anipod
0% granny smith
99.3% an apple with a note saying "ipod"

0% an adversarial attack

Model: tiny tweet

Google DeepMind


https://google-research.github.io/vision_transformer/lit/
https://arxiv.org/pdf/2111.07991

Open-Vocabulary Tasks

* We can extend these to open-vocabulary detection and segmentation too in analogous
ways.

* Train the model to recognize a set of “seen classes”, and we can then evaluate on

“unseen”’ones.

*  Online demo for Owl-ViT.

Image-level contrastive pre-training Transfer to open-vocabulary detection
I:‘ Object image embeddings
Text Query [] Object box embeddings
'bird Text embedding 'giraffe' Text embeddings
sitting —> Transformer "tree' —>| Transformer ——— ][] [] Predicted
on a tree' encoder 'car' encoder classes/queries

1—>'giraffe’'

B

+ - - P

8 0—>'tree'

9
8 0—>'giraffe’
2
1

~ o Contrastive 0 1—><no object> Set prediction
b Vision . o | < loss over objects
\ —>| Transformer loss ove Transformer \ 4 Prediicted b in an image.
r eheoder images in a chcade < redicted boxes

_| batch. \

embedding »D———le, Yy W, b))
S v
P

——

[ MLP head ] [ Linear projection |

w,, hy)



https://ku-cvlab.github.io/CAT-Seg/
https://arxiv.org/pdf/2205.06230

Open-Vocabulary Tasks

* We can extend these to open-vocabulary detection and segmentation too in analogous
ways.

* Train the model to recognize a set of “seen classes”, and we can then evaluate on
“unseen”ones.

* Online demo for CAT-Seg.

~vwgle DeepMind


https://ku-cvlab.github.io/CAT-Seg/
https://arxiv.org/abs/2303.11797

Generative Text Models

* We have discussed matching images / videos to text.

* What about generating text directly from the image?

Input Image Input Audio (transcribed) Model Response: Text

‘))) What's the first step to make a veggie omelet  Crack the eggs into a bowl and whisk them.
with these ingredients?

From Gemini Tech Report.

Google DeepMind


https://arxiv.org/pdf/2312.11805

Generative vs Discriminative Models

* Informally
o Discriminative models can distinguish between different kinds of data instances.

o Generative models can generate new data instances

Discriminative Model Generative Model

A photo of two
Two men in suits x ?Neanlgkuilnngs

|
|
|
|
|
|
|
i
Two penguins walking \/:
|
|
|
|
|
|
|
|
|
|
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Generative vs Discriminative Models

* Formally

O

instance, and y is the label.

o Generative models capture the joint probability, p(x, y)

* Discriminative Model

2 p(ylx)
g y =10
D H—

* Generative Model

p(z,y)
M H
g ‘I’-N\\
5 | {e® y=0
I-‘\\
/ \ ’I. Yy = 1

Discriminative models capture a conditional probability p(y |x), where x is the data

Google DeepMind



Transformers for Language Modelling

* Textual transformer in CLIP is just like a vision transformer:
o Tokenise the text, pass it through a transformer.

o Each token attends to each other token

Google DeepMind



Transformers for Language Modelling

* Forlanguage modelling, we predict the

next text token given all previous text

tokens.

* The next text token is simply a token from

our vocabulary of tokens

O

Therefore, simply a large
classification problem.
Llama has ~32K tokens, Gemini has

256K vocabulary size.

Decoding time step: 1@3 456

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT

f

Kencdec  Vencdec ( Linear + Softmax

DECODERS

)

Je

suis

étudiant

PREVIOUS
OUTPUTS
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Transformers for Language Modelling

Transformers for language modelling need to be causal

o A token should only attend to previous tokens.

Decodingtimestep: 1(2)3 456 OUTPUT

* Inference is also done sequentially

o Wefirst predict Token 1.

o Then predict Token 2 given Token 1.

o ThenToken 3, given Tokens 1and 2 ... .

* Language models are therefore comparatively

computationally expensive!

* Can we speed up training though?

Google DeepMind



Transformers for Language Modelling

* Training can still be done in parallel by making use of attention masks.
* We can process a sentence in parallel, but each word token only attends to previous ones.

Fully-visible Causal
. aSens - ----- L
L, SEeee v - )
{ aanes -
. 0000
. 008 ot the i t0 "

X X, X3 X, Xg

+~— Input — <~— Input ——

Figure from T5. Google DeepMind


https://arxiv.org/pdf/1910.10683

Large Language Models

Model Architecture
* Large Language Models are standard transformers that

The Gemma model architecture is based on the
transformer decoder (Vaswani et al., 2017). The
core parameters of the architecture are summa-
. . , rized in Table 1. Models are trained on a context
* Not many architectural differences to what we've already length of 8192 tokens. We also utilize several

improvements proposed after the original trans-
discussed! former paper, and list them below:

Multi-Query Attention (Shazeer, 2019). No-
tably, the 7B model uses multi-head attention
while the 2B checkpoints use multi-query atten-

have been greatly scaled up!

* Open-source models

O LIama, MiStraI, Gemma, tion (with num_kv_heads = 1), based on ablations
that showed that multi-query attention works well
* Closed-source models at small scales (Shazeer, 2019).
.. RoPE Embeddings (Su et al., 2021). Rather than
O GPT, Gemm', Claude ... using absolute positional embeddings, we use ro-

tary positional embeddings in each layer; we also
share embeddings across our inputs and outputs
to reduce model size.

GeGLU Activations (Shazeer, 2020). The stan-
dard ReLU non-linearity is replaced by the approx-

Google DeepMind


https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2310.06825
https://arxiv.org/pdf/2403.08295

Generative Image Text Modelling

* Connect a vision encoder to a language decoder

* Both models are typically transformers

a tscsun radio ...... 54 : EOS 12 : 54 EOS
O 0 0 0 o0 0 . OO0 m
Text decoder
‘ - N X Text decoder
[ Feed forward ]
7Y
1 DDDD-DDDDQDQ
{ Multi-head self-attention ] e E T :
A Q: what time is it? A: 12 : 54
(b) VQA
O &6 0 0 A A B A B A @
& BOS a tscsun radio ...... 54 2 | EEm---- O o D 0
Image encoder A A
) Tokenize & Embed temporal temporal
T Kﬂ embedding’ ?? embedding 6 @
a tecsun radio with T & B
the time of 12 : 54. ‘ Image encoder ‘ Imageencoder ‘
L A ) i J
Framel  ...... Frame 6

(a) Pre-training/captioning | (c) Video

Google DeepMind
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https://arxiv.org/pdf/2205.14100

Design Questions Oood

{ TECaH A G EC] ] Model Ablations

! Connector Types:
. 1 o o o B gy
* What image encoder to use? — [ R } | CAbstractor |

Blue Cheese Stuffed | | '~ CORRECLOR o mrrmremmmeneemr et

* How do we “convert” vision tokens to a common sy £ et

— Contrastive Loss;
— Reconstructive Loss

space as the language model?

Image Resolution:
Y |«---4 — Larger Images; '
i — Multi-Scale Inputs. :

* Do we need to reduce the number of vision tokens

(particularly for video)?

* What mixture of data do we include in our training

_ Data Ablations
dataset? S| Tooning

~~~~ hyperparameters as

MM1 we scale
* Figures from MM1. Methods, Analysis & Insights " How 10 combine vaious|
Mixing Ratios |a-----+-""""" "} data? ;

from Multimodal LLM Pre-training { Use of text only

------------------------------------------- i data?

H Text : E b
i | Image + ||Interleaved||Synthetic Only ‘w-.. Sources and
i | Text Data Data Data Data : composition of data ]
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https://arxiv.org/pdf/2403.09611
https://arxiv.org/pdf/2403.09611

Vision Encoders

* Most works use strong, pretrained vision and language models.
* Language models are typically substantially larger (order of 10s of billions of parameters)
than vision encoders (often less than a billion parameters)
* Why?
* Representation learning for images and video is harder than for text.
* We can pretrain text models from scraping web data; vision models are harder.

« Stay tuned for upcoming lectures on Representation Learning.

Google DeepMind



Vision Encoders

* Inpractice, image-text pretrained vision encoders (like CLIP and SigLIP) tend to work the
best

* Intuitively, this makes sense as the model has been exposed to language during pretraining.

®* QOther vision encoders can work too.

Language Supervised Self-Supervised & Other

Model Architecture All G K O V Model Architecture AlGK OV
SigLIP ViT-SO400M/14@384 |1 1 1 2 1 DINOv2 ViI-L/14@518 11111
OpenCLIP  ConvNeXt-XXL@1024| 2 6 8 1 3 DINOv2 ViT-L/14@336 2 2332
DEN-CLIP  ViT-H/14@378 3 4 2 5 4 MAE ViT-L/16@224 3 5224
OpenCLIP  ConvNeXt-L@1024 4 8 7 3 8 IJEPA ViT-H/14@224 4 3 6 8 3
SigLIP ViT-L/16@384 5 5 4 4 6 SD21 VAE+UNet/16@512| 5 7 9 9 5
OpenAI CLIP ViT-L/14@336 6 3 6 6 7 MiDaS3.0 ViT-L/16@384 6 6 8 56
EVA-CLIP-02 ViT-L/14@336 7 2 5 8 2 SupViT ViT-L/16@224 7 49 4 8
OpenCLIP  ConvNeXt-L@512 8 7 3 7 9 MoCov3 ViT-B/16@224 8 8 47 7
DEN-CLIP  ViT-L/14@224 9 9 9 910 MoCov3 ViT-L/16@224 9 95609

SAM ViT-H/16@1024 10 10 10 10 10
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https://arxiv.org/abs/2103.00020
https://arxiv.org/pdf/2303.15343
https://arxiv.org/pdf/2406.16860

Connecting Vision Encoder to Language Decoder

* To connect a vision encoder to a language decoder, we

need to: & f=w ragio e B Eﬁs
Text decoder
o Project vision tokens to the same dimensionality ( Feed forward i
as used by the Ianguage model. ( Multi-head self-attention )
o Potentially reduce the number of vision tokens. i Tl g - el

‘ Image encoder

Otherwise, the cost of processing them all with

Tokenize & Embed

a tecsun radio with
the time of 12 : 54.

the language decoder is too large.

(a) Pre-training/captioning

o Especially the case with high-resolution images, or

videos.
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Vision-Language Connector

* Average pooling to K tokens.

Google DeepMind



Vision-Language Connector

* Learned cross-attention with K query tokens. Q T
Vv
* Self-attention when Query, Key and Values are 5
projections of the same input, X. softmax ( JE )
k

* Cross-attention when Query is separate from the

Keys and Values.

* Number of query tokens determines the number of

output tokens.

Google DeepMind



Vision-Language Connector

* Learned cross-attention with K query tokens.

* Used by multiple different models with different names:

o Perceiver Resampler, also used in Flamingo

Cross
Attention

o Q-Former used in BLIP.

Latent array
(Nx D)

o TokenLearner used in Mirasol.

o “Attention Pooling”

Byte array
(MxC)

Google DeepMind


https://arxiv.org/pdf/2103.03206
https://arxiv.org/pdf/2204.14198
https://arxiv.org/pdf/2301.12597
https://arxiv.org/pdf/2106.11297
https://arxiv.org/pdf/2311.05698

Vision-Language Connector

* Convolutional Network with Adaptive Pooling.
* Asmall CNN on visual features maintains the locality of features.
* Adaptive average pooling can maintain a fixed number of tokens.

* Cross-attention does not preserve locality among tokens.

AV A( = > > o

VAV 4 =5 ]
WAL —> |2 | XL © T @ X[

R o o = o

o o < o

s ~ o o

(a) C-Abstractor

Honeybee: Locality-enhanced Projector for Multimodal LLM
Google DeepMind



https://openaccess.thecvf.com/content/CVPR2024/papers/Cha_Honeybee_Locality-enhanced_Projector_for_Multimodal_LLM_CVPR_2024_paper.pdf

Vision-Language Connector

* So which one to use?
* Recent studies (MM1), have indicated that the biggest factor is the number of tokens, K,
that are pooled.
o Trade-off being that it is more computationally expensive too.
* Convolutional connectors were found to be the best though.

* Also beneficial to use “two stage training” (LLaVa, Cambrian)

o First train only the connector
o Then finetune the whole model.
o Thisis intuitive, since the connector is the only randomly initialized part of the

network to start with.

Google DeepMind


https://arxiv.org/pdf/2403.09611
https://arxiv.org/pdf/2304.08485
https://arxiv.org/pdf/2406.16860

Instruction Tuning

* Language models are pretrained with “next token prediction”.
* Predicting the next word does not align with what humans want
* For example, when asking a raw LLM a question, it will respond with other similar questions.

o These are the most likely completions based on the training data.

Explain the moon landing to a 6 year old in a few sentences. Prompt

GPT-3 Completion

Explain the theory of gravity to a 6 year old.
gmplain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

Google DeepMind


https://arxiv.org/pdf/2203.02155

Instruction Tuning

Prompt

1pletion

We need to finetune language or vision-language models to answer questions of interest.
Instruction Tuning refers to finetuning on (Instruction, Input, Answer) triplets.

A key component of assistants like ChatGPT, Gemini and Claude.

Explain the moon landing to a 6 year old in a few sentences.

GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and sent them back to the earth so we could all see them.

Google DeepMind



Instruction Tuning

* We need to finetune language or vision-language models to answer questions of interest.
* Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.

* Some tasks are naturally in an instruction-tuning format (ie Visual Question Answering)

What color are her eyes?
What is the mustache made of?

Google DeepMind



Instruction Tuning

* We need to finetune language or vision-language models to answer questions of interest.
* Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.
* And others can be transformed into a question-answering format (ie classification)

o “What objects are present in this image?”

Google DeepMind



Instruction Tuning

* We need to finetune language or vision-language models to answer questions of interest.

* Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.

* Aimis to train on a diverse range of instructions, in the hope that we will be able to
generalize better to unseen instructions.

* |nstruct-BLIP shows that this is indeed the case.

BLIP-2 Zero-shot ”

Train w/ Plain Input 463
Eval w/ Instruction

Train w/ Dataset Name
Eval w/ Instruction

Multi-task

Train w/ Dataset Name
Eval w/ Dataset Name

InstructBLIP

40 45 50 55 60 75 90 105

Held-out Avg. Held-in Avg. §g|€ DeepM ind


https://arxiv.org/pdf/2305.06500

Instruction Tuning

* We need to finetune language or vision-language models to answer questions of interest.
* Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.

* To generalize to a wide range of tasks, we need diverse datasets and tasks.

* Alot of empirical analysis to work out good mixtures and datasets.

* Lot of “secret sauce” goes into here.

M RenderedText [127] (10.0 K) RefCOCO [121] (30.0 K) M CLEVR [22] (350.0 K)
Filtered DVQA (1550.0K) M VisText [115] (9.0K) VizWiz [44] (20.0 K) M TallyQA [1] (250.0K)
DVQA[=4] (775.0 K) M FinQA [24] (6.0K) 1 Visual7W [12] (14.0 K)
SynthDog {£0] (500.0 K) W InfoVQA [14] (2.0 K) 1 LAION GPT-4V [22] (11.0 K) Filtered WebSight (790.0 K)
ArxivQA [£9] (100.0 K) W TAT-QA [145] 2.0K) W IDK [17] (11.0K) W WebSight [£4] (10.0 K)
OCRVQA [21] (80.0 K) B HiTab 7] 2.0K) M OKVQA [22] (9.0K) M DaTikz[12] (47.0K)
ScreenQA [19] (79.0 K) W HatefulMemes [29] (8.0 K) M Design2Code [110] (0.5 K)
M WIKiSQL.[144] (74.0 K) ALLaVA_[20] (700.0 K) M OODVQA [120] (8.0K)
1 Low-Level Vision{22] (50.0K) ~ Q-Instruct[124] (400.0 K) I Sketchy VQA [120] (8.0 K) M Geol70K [27] (170.0 K)
[—i Cambrian-7M 1 DocVQA [20] (39.0K) LNQA [101] (302.0 K) M Visualmre [114] (3.0 K) M RAVEN 2] (42.0K)
W WTQL2] (38.0K) LVIS-Instruct4V [122] (220.0 K) M GeomVerse [27] (9.0 K)
M ChartQA [29] (28.0K) LLaVA150K [75] (150.0 K) OpenOrca [7] (994.0 K) M MathVision [123] 3.0K)
W IconQA [22] (27.0K) VisualGenome [22] (86.0 K) W MathInstruct [12] (262.0 K) M Inter-GPS [23] (1.0 K)
M Chart2Text [55] (26.0 K) VQAv2[42] (83.0K) M OrcaMath [22] (200.0 K) ETQAL] (10K)
(9@ M TabMWP [21] (23.0K) GPT4V Rewritten (77.0 K) M WizardCoder [24] (143.0 K)
(" 5\ > M TextCaps [111] (22.0 K) GQA [L0] (72.0K) M OpenCodelnterpreter.[122] (66.0 K) M Data Engine (161.0 K)
€N M LLAVAR [140] (20.0K) A-OKVQA[107] (50.0 K) M Dolly[20] (11.0K) M PathVQA [4] (32.0 K)
MW ST-VQA [15] (170 K) AlfWorld [127] (45.0K) M ScienceQA [£4] (12.0K)
W A2D[52] (15.0K) ShareGPT [22] (40.0 K) Filtered CLEVR (350.0 K)
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Credits and References

* Andrea Vedaldi’'s lecture slides here.
* Andrew Zisserman'’s lecture slides here.

* The Annotated Transformer

®* The lllustrated Transformer

* Stanford CS231N: Deep Learning for Computer Vision

* Stanford CS224N: Natural Language Processing with Deep Learning

* Deep Learning Book by lan Goodfellow

* All the papers linked in these slides
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https://www.robots.ox.ac.uk/~vedaldi/teach.html
https://www.robots.ox.ac.uk/~az/lectures/index.html
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://jalammar.github.io/illustrated-transformer/
https://cs231n.stanford.edu/
https://web.stanford.edu/class/cs224n/
https://www.deeplearningbook.org/

Thank you!
Questions?

anurag.arnab@gmail.com
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