
Advanced Architectures for Vision

Anurag Arnab



Outline

• Supervised learning fundamentals

o Linear classifiers

o Perceptrons

o Convolutional Networks

• Transformers

o Transformer deep-dive

o Architectures for specialized tasks

• Connecting Vision and Language

o Image-text models

o Large Language Models

o Vision Language Models



• We want to train a classifier that predicts 

whether an image, 𝒙, contains a certain 

class (ie ”bicycle”)

• We can learn this function, 𝐹 𝒙 , from 

images that have, or do not have, the 

object. 

Linear Predictor



• In the simplest case, the function is a linear 

classifier, 𝐹 𝒙 .

o Images are high dimensional vectors.

o Compute the dot product, between a 

parameter vector, 𝒘, and image, 𝒙, to 

compute a score.

o The sign of 𝐹 𝒙  is used as the 

prediction.

Linear Predictor



• We can apply a linear classifier to vectors, 𝒙.

• However, we want to process images, 

videos or other data that are not necessarily 

vectors.

• Representation function, 𝜙(𝒙),  maps data 

to vectors.

• Non-linear classifier by applying linear 

predictor to non-linear representation 

function. 

Data Representations



• Representation should help a linear classifier 

to perform classification.

• Semantic similarity between data points 

needs to be mapped to a vector similarity.

• Therefore, a good representation needs to:

o Be invariant to nuisance factors

o Sensitive to semantic factors.

• How do we choose 𝜙? 

Meaningful Representations



Perceptron

• One of, if not, the first neural networks by 

Rosenblatt, 1957.

• The perceptron maps an input vector, 𝒙, to a 

probability, 𝑦.

• Example: 𝑦 is the probability that image 𝒙 is a 

bicycle.

https://bpb-us-e2.wpmucdn.com/websites.umass.edu/dist/a/27637/files/2016/03/rosenblatt-1957.pdf


Perceptron

• Computes the probability by computing a 

weighted sum of the input with a learned 

vector 𝒘, and then applying a non-linear 

sigmoid activation function.

• Sigmoid makes the perceptron non-linear.

• Perceptron is effectively a linear classifier 

with a sigmoid activation function.



Sigmoid Function

• Non-linear activation function of the 

perceptron.

• 𝑆 𝑧 = !
!"#!"

• Converts real values, 𝑧, in the range 

(−∞,∞) into probabilities in the range 

(0, 1).



Training a Perceptron

• Minimise the cross entropy loss.

• 𝐿 𝑤 = − !
$
∑%&!$ 𝑦% log 𝑓 𝒙𝒊; 𝒘 + (1	 − 	𝑦%)	log 𝑓 𝒙𝒊; 𝒘

For positive labels, 𝑦 = 1 For negative labels, 𝑦 = 0



Why Cross-Entropy Loss?

• We want to maximise the likelihood, 𝑝 𝑦% 	 𝑥% 	; 𝒘).

• If we assume we sample 𝑁 examples in an independent and identically 

distributed (IID) manner, then 

• 𝑝 𝒚	 𝒙) = ∏% 𝑝 𝑦% 	 𝑥%).

• And so to learn parameters, 𝒘, we want to maximise 

• 𝒘 = argmax
𝒘

𝑝 𝒚	 𝒙	; 𝒘) = ∏% 𝑝 𝑦% 	 𝑥% 	; 𝒘).



Why Cross-Entropy Loss?

• 𝒘 = argmax
𝒘

𝑝 𝒚	 𝒙	; 𝒘) = ∏% 𝑝 𝑦% 	 𝑥% 	; 𝒘).

• If we take the logarithm, we obtain

• 𝒘 = argmax
𝒘

∑% log 𝑝 𝑦% 	 𝑥% 	; 𝒘) .

• Since we like minimizing losses, we can minimise the negative of the log-likelihood

• 𝒘 = 	argmax
𝒘

−∑% log 𝑝 𝑦% 	 𝑥% 	; 𝒘) .



Multi-Class Perceptron

• We can combine multiple perceptrons to predict more than one class.

• Each perceptron computes a score, 𝑥)
(+) for a class hypothesis of 𝑐 = 1, 2, … , 𝐶.

o Subscript denotes the class, superscript the layer index.

• The vector of scores, 𝒙(+), is mapped to a vector of probabilities, 𝒙(-), with a softmax 

function. 



Softmax

• Maps a vector of scores to probabilities.

• 𝑆 𝑧% = #"#
∑$ #

"$  

• In the binary case, the softmax is the same as the sigmoid.



Softmax

• Maps a vector of scores to probabilities.

• 𝑆 𝑧% = #"#
∑$ #

"$  

• In the binary case, the softmax is the same as the sigmoid.

0

1

𝑥!- =
𝑒/

𝑒/ + 𝑒0
	×
𝑒1/

𝑒1/
	 =

1
1 + 𝑒1/



Softmax

• Maps a vector of scores to probabilities.

• 𝑆 𝑧% = #"#
∑$ #

"$  

• In the binary case, the softmax is the same as the sigmoid.

𝑥!- =
𝑒//+

𝑒//+ + 𝑒1//+
=

1
1 + 𝑒1/



Multilayer Perceptron

• We can chain multiple perceptrons together, resulting in a deep neural network. 

• Depth refers to the fact that the resulting function decomposes as a long, ”deep” 

chain of simpler perceptrons.

• 2-layer MLP is shown here



Convolutional Networks

• Architectures designed specifically for images, operating on 2D (images) or 3D 

(video) grids.

• View data as a 𝐵	×	𝐻	×𝑊	×𝐶 grid, where B is the batch size, H the height, W the 

width and C the number of channels.



Biological Motivation

• Hubel & Wiesel conducted seminal experiments in 

understanding the visual cortex of mammals.

• In cats and monkeys, they found the existence of 

neurons in the brain that activate (by measuring with 

implanted electrodes) to specific orientations and 

locations of a visual stimulus.

• Therefore, these neurons behave like local, translation-

invariant operators.

• They later won the Nobel Prize in Physiology and 

Medicine in 1981. 

• Their work inspired the Neurocognitron architecture 

which may be the first CNN (1980).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/pdf/jphysiol01247-0121.pdf
https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf


Convolution

• A linear filter, 𝒇 , computes the weighted summation 

of a window of the input, 𝒙.

• Key properties

o Linearity: Operation is linear in the input and the 

filter parameters.

o Locality: Only looks at a small window of the 

data.

o Translation invariance: All windows are 

processed using the same filter weights



Convolution

• A linear filter, 𝒇 , computes the weighted summation 

of a window of the input, 𝒙.

• Key properties

o Linearity: Operation is linear in the input and the 

filter parameters.

o Locality: Only looks at a small window of the 

data.

o Translation invariance: All windows are 

processed using the same filter weights.

• We use multiple filters – one output channel per filter.

o Intuitively, each filter activates for a certain 

pattern in the input.



Convolution in 1D

• Convolve a filter (in green) with input (in grey) to get the output (in yellow).

Stride = 1 Stride = 3



Convolution

• So if the input, 𝒙, has shape 𝑁	×	𝐻	×	𝑊	 ×	𝐶%3
• The filter, 𝑓, has shape, 𝑘4 	×	𝑘5 	×	𝐶%3	×	𝐶678 

• The output 𝒚, has shape (with stride 1)



Convolution

• So if the input, 𝒙, has shape 𝑁	×	𝐻	×	𝑊	 ×	𝐶%3
• The filter, 𝑓, has shape, 𝑘4 	×	𝑘5 	×	𝐶%3	×	𝐶678 

• The output 𝒚, has shape

 𝑁	×	𝐻	 − 𝑘4 − 1	×	𝑊	 − 𝑘5 	− 1	×	𝐶678



Convolution in 1D

• The output size decreases progressively



Padding

• Padding extends a tensor, 𝒙, with a border filled with zeros.

• Typically used to retain the original input dimensions after each operation.



Striding

• Striding moves the filter 𝑆 pixels at a time.

• It produces smaller output volumes. And increases the receptive field of subsequent 

operations.



Striding

• We can also think of padding and striding as layers that we do before and after a standard 

convolution layer.



Convolution Example

• What is the padding?

• Filter dimensions?

• Input size?

• Output size?

• Demo here.

https://cs231n.github.io/convolutional-networks/


Receptive Field

• How many input pixels are considered 

by a cell at a particular feature map of 

the network.

• Try out the demo here.

https://distill.pub/2019/computing-receptive-fields/


Receptive Field

• How many input pixels are considered 

by a cell at a particular feature map of 

the network.

• Try out the demo here.

https://distill.pub/2019/computing-receptive-fields/


Receptive Field

• How many input pixels are considered 

by a cell at a particular feature map of 

the network.

• Try out the demo here.

• What do we want to be at the end of 

the network?

https://distill.pub/2019/computing-receptive-fields/


Receptive Field

• How many input pixels are considered 

by a cell at a particular feature map of 

the network.

• Try out the demo here.

• What do we want to be at the end of 

the network?

o For classification, should be the 

entire input.

https://distill.pub/2019/computing-receptive-fields/


Deep Convolutional Neural Network

• A long sequence of layers!

• Typically alternate convolution, non-

linear activation (ie ReLU).

• Perform pooling and/or striding to 

increase the receptive field, and 

decrease resolution.

• Usually decrease spatial dimensions, 

increase channel dimensions through the 

network



AlexNet

• Started the Deep Learning revolution in Computer Vision by winning the ImageNet 

challenge in 2012

o The Top-5 error was 16%, compared to the runner-up with 26% error.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://www.image-net.org/challenges/LSVRC/2014/
http://www.image-net.org/challenges/LSVRC/2014/


Residual Networks

• Standard deep networks can become difficult to optimize 

when they become deep.

• Residual connections enable training very deep networks 

(even 1000 layers) in a stable manner.

• Intuition: Adding additional layers with identical connections 

to an existing network should not degrade performance; the 

weight layers can be 0 and the original function is 

maintained.

https://arxiv.org/pdf/1512.03385


Residual Networks

• Principle of residual connections has been employed in subsequent architectures (both for 

more advanced CNNs, and other architectures like transformers).

AlexNet

ResNet-50



Or just take a break …

Questions?



Transformers



Outline

• Deep dive of transformers and self-attention

• Transformers in Computer Vision.



Context

Image credit

https://www.instagram.com/mensweardog/?hl=en


Context

Image credit

https://www.instagram.com/mensweardog/?hl=en


Context

Image credit

https://www.instagram.com/mensweardog/?hl=en


Context

Image credit

https://www.instagram.com/mensweardog/?hl=en


Context

• “The animal didn't cross the street because it was too tired”

• What is “it”?

Try more examples here

https://colab.sandbox.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb


Attention and Transformers

• Attention is a method of gathering relevant contextual information

• The transformer is a neural network layer that relies on attention

• In fact, state-of-the-art models across various domains consist almost entirely of 

transformer layers.



What is Attention?



High-Level Overview

• Use machine translation as initial example, as this is what Transformers were initially 

developed for

Figure credit for this, and next few slides

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


High-Level Overview

• Embed input into tokens (fixed dimensional vector)

• Process with encoder layer



Self-Attention in Detail

• Given an input sequence, 𝑋.

• Project to Query, Key, Values using linear transforms. 

• Head output = Softmax 𝑄𝐾9 𝑉



Self-Attention in Detail

• Given an input sequence, X

• Project to Queries, Keys and Values using linear transforms.

o 𝑄 = 𝑊:𝑋, 𝐾 = 𝑊;𝑋, 𝑉 = 𝑊<𝑋



Self-Attention in Detail

• Given an input sequence, X

• Project to Queries, Keys and Values using linear transforms.

o Softmax 𝑄𝐾9



Self-Attention in Detail

• Project to Queries, Keys and Values using linear transforms.

• Calculate a score: For each query, how relevant are all the other words?



Self-Attention in Detail

• Project to Queries, Keys and Values using 

linear transforms.

• Calculate a score

• Representation of each query token is 

attention-weighted sum of values.

o 𝑍 = Softmax 𝑄𝐾9 𝑉



Self-Attention in Detail: As a Matrix

𝑛8
𝑑!

𝑑!
𝑑+

𝑛8
𝑑+



Self-Attention in Detail: As a Matrix

𝑛8
𝑑!

𝑑!
𝑑+

𝑛8
𝑑+

𝑛8
𝑑+



Self-Attention in Detail: Multiple Heads



Self-Attention in Detail

• Where did the √𝑑; come from

• Temperature of the softmax to control its “peakiness” 



Self-Attention in Detail

• Where did the √𝑑; come from

• Temperature of the softmax to control its “peakiness” 



Positional Embeddings

• Self-attention is permutation invariant!

o Say input is [x1, x2, x3]. And output is y1

o If input is [x1, x3, x2]. Output is ...



Positional Embeddings

• Self-attention is permutation invariant!

o Say input is [x1, x2, x3]. And output is y1

o If input is [x1, x3, x2]. Output is y1



Positional Embeddings

• Self-attention is permutation invariant!

o Say input is [x1, x2, x3]. And output is y1

o If input is [x1, x3, x2]. Output is y1

• But what if the ordering of the input vectors conveys information as well?

o The position of a word in a sentence matters!

o ““The man ate a fish” != “The fish ate a man””



Positional Embeddings

• Self-attention is permutation invariant!

• Learned positional embedding

o At the input, add a learned vector to each token

o Representation of the token changes depending on its input position



Positional Embeddings

• Self-attention is permutation invariant!

• Sinusoidal positional embedding

Figure credit

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Putting it all together

• Original Transformer of Vaswani et al. Attention is all You Need

https://arxiv.org/abs/1706.03762


Advantages of Transformers

• Great for modelling context

o Each token can have access to all other tokens in the sequence

o What is the receptive field of a transformer? Compared to a CNN?

• A generic architecture:

o Operates on any inputs that can be tokenized!

• Parallelizable

• Empirically shown to perform excellently at scale



Transformers at Scale

• Keep performing better with deeper models and more data

• Scaling Laws for Neural Language Models

https://arxiv.org/pdf/2001.08361.pdf


Weaknesses of Transformers

• Quadratic complexity

o Each token attends to every other token

o 𝑁 tokens → 𝑁+ operations

o Prohibitive as the number of tokens increases!

• Most powerful language models are extremely expensive

• Large body of work on more efficient transformers.

o Good survey paper

• Transformers can overfit easily on smaller datasets

https://arxiv.org/abs/2009.06732


Weaknesses of Transformers

• Quadratic complexity

o Each token attends to every other token

o 𝑁 tokens → 𝑁+ operations

o Prohibitive as the number of tokens 

increases!

• Most powerful language models are extremely 

expensive

• Large body of work on more efficient 

transformers.

o Good survey paper

• Transformers can overfit easily on smaller datasets

https://arxiv.org/abs/2009.06732


Transformers and Computer Vision

• CNNs used to be the architecture of choice in Vision

• Transformers were quite established as the architecture of choice in NLP



Transformers and Computer Vision

• CNNs used to be the architecture of choice in Vision

• Transformers were quite established as the architecture of choice in NLP

• Numerous attempts to incorporate self-attention into CNNs:

o Wang CVPR 2018, Bello ICCV 2019, Huang ICCV 2019, Carion ECCV 2020

• Or to replace convolutions entirely with self-attention

o Parmar ICML 2018, Ramachandran NeurIPS 2019

https://arxiv.org/abs/1711.07971
https://arxiv.org/pdf/1904.09925.pdf
https://arxiv.org/abs/1811.11721
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/1802.05751
https://arxiv.org/pdf/1906.05909.pdf


Vision Transformers

• An Image is Worth 16x16 Words

• ”Tokenize” an image by splitting it into patches. Pass tokens through a transformer.

https://arxiv.org/abs/2010.11929


Vision Transformers

• An Image is Worth 16x16 Words

• ”Tokenize” an image by splitting it into patches. Pass tokens through a transformer.

• Same as convolution where the stride is the same as the filter size.

https://arxiv.org/abs/2010.11929


Vision Transformer Models

Notation e.g. ViT-L/1616



An Obvious Idea?

• Might appear obvious to replace CNN entirely with a transformer.

• Does not really work well at standard, ImageNet setting

• Larger models, ie ViT-L/16 are actually worse than smaller ones, ie ViT-B/16.

Shaded grey area are 
the results obtained 
by CNNs of different 
sizes



Vision Transformers are effective at scale

• Transformers have less inductive biases then Convolutional Networks (ie translational 

equivariance)

• So they need more data to train



Vision Transformers are effective at scale

● Transformers, are however, able to take advantage of large-scale data better than CNNs 

can

● And are more compute-efficient too in terms of computation to reach accuracy.

Pre-training compute (ExaFLOPs)



High Resolution Data

• Vision Transformers still have issue 

with quadratic complexity with respect 

to the number of tokens.

• Becomes a problem when we have 

high resolution images.

• Need to process images at high 

resolution for tasks like object 

detection and semantic segmentation.

Object detection. Process at 
1024 x 1024. ? tokens! 

Image classification. Process at 
224 x 224. ? tokens! 



High Resolution Data

• Vision Transformers still have issue 

with quadratic complexity with respect 

to the number of tokens.

• Becomes a problem when we have 

high resolution images.

• Need to process images at high 

resolution for tasks like object 

detection and semantic segmentation.

Object detection. Process at 
1024 x 1024. 4096 tokens! 

Image classification. Process at 
224 x 224. 196 tokens! 



High Resolution Data

• Vision Transformers still have issue 

with quadratic complexity with respect 

to the number of tokens.

• Becomes a problem when we have 

high resolution images.

• Need to process images at high 

resolution for tasks like object 

detection and semantic segmentation.

Object detection. Process at 
1024 x 1024. 4096 tokens! ? 
GFLOPs

Image classification. Process at 
224 x 224. 196 tokens! 20 GFLOPs



High Resolution Data

• Vision Transformers still have issue 

with quadratic complexity with respect 

to the number of tokens.

• Becomes a problem when we have 

high resolution images.

• Need to process images at high 

resolution for tasks like object 

detection and semantic segmentation.

Object detection. Process at 
1024 x 1024. 4096 tokens! 8734 
GFLOPs

Image classification. Process at 
224 x 224. 196 tokens! 20 GFLOPs



Swin Transformer

• Process alternating sliding windows of tokens at a time.

• Substantially reduces the computation required for high resolution data.

• Makes a transformer more “CNN”-like.

• Excels at tasks like object detection and segmentation.

https://arxiv.org/pdf/2103.14030


Hierarchical Pooling

• CNNs use pooling throughout the network to reduce spatial dimensions and increase the 

“receptive field”

• In transformers, we can use them to reduce the number of tokens and increase the 

efficiency of the model.

• Examples: Multiscale ViT, Pyramid ViT. Particularly suited for high-resolution tasks.

https://arxiv.org/pdf/2104.11227
https://arxiv.org/pdf/2102.12122


Video

• Video data is also computationally very demanding due to the additional “time” dimension.

• Can tokenize data in the same way as images, by extending “patches” to “tubelets” in time 

(ie ViViT).

https://arxiv.org/pdf/2103.15691


Video

• Manage complexity of the data by alternating attention between spatial and temporal axes 

in various manners (ViViT, Timesformer).

• Sliding windows in 3D (Video Swin)

https://arxiv.org/pdf/2103.15691
https://arxiv.org/pdf/2102.05095
https://arxiv.org/pdf/2106.13230


Are Transformers All You Need?

• Vision Transformers outperform CNNs at large scale (model size and dataset size).

• Vision transformers need more data as they have fewer inductive biases?

• Are there other architectures besides CNNs and transformers that we could be using?



MLP-Mixers

• Transformer encoder block has two main 

operations:

o Multi-head attention

o MLP / Feedforward

• What if we use only MLPs?

• MLP-Mixer: Alternate between MLPs on the 

”channel” and “token” axes

https://arxiv.org/pdf/2105.01601


MLP-Mixers

• Competitive with Vision Transformers and CNNs.

• Again, only effective at larger scales



ConvNeXt

• Redesign ConvNet using modern “tricks” from 

transformers

o ReLU -> GeLU

o Batch Norm -> Layer Norm

o Fewer activation functions and normalization

o Further regularization during training (ie label 

smoothing mixup, data augmentation)

• Performs on-par with vision transformers.

• Good at high-resolution tasks.

https://arxiv.org/pdf/2201.03545


ConvNeXt

• Redesign ConvNet using modern “tricks” from 

transformers

o ReLU -> GeLU

o Batch Norm -> Layer Norm

o Fewer activation functions and normalization

o Further regularization during training (ie label 

smoothing mixup, data augmentation)

• Performs on-par with vision transformers.

• Good at high-resolution tasks.

Semantic segmentation on ADE20K



So Why Transformers?

• Can handle variable resolution inputs

o Videos or images of different sizes.

o Problematic for a Mixer since “token mixing” depends on the number of tokens.

• Architecture that works well for multiple modalities

o Language, images, video, audio …

o Any data that can be tokenized can be processed by a transformer.



Or just take a break …

Questions?



Connecting Vision and 
Language



Discriminative Image-Text Modelling

• CLIP performs contrastive pretraining of image and text.

• Scrapes a dataset of image-text pairs from the web.

• Pretraining loss function encourages the model to match a feature representations from 

an image to the representation from text.



CLIP Architecture and Loss

• CLIP architecture is simply a vision encoder and a text encoder

o Both are transformers in practice.

• Contrastive loss encourages a high score for the correct image-text pair. And a low score 

for all other examples in the batch

o What do we need to be careful of here?



CLIP Architecture and Loss

• CLIP architecture is simply a vision encoder and a text encoder

o Both are transformers in practice.

• Contrastive loss encourages a high score for the correct image-text pair. And a low score 

for all other examples in the batch

o The objective can be too easy if there are no other “hard examples” in the batch.

o Typically means that we need a large batch size during training in order to have a 

higher chance of having “hard examples”

o It is also possible to construct batches in the data-loader to be “harder”. But this 

does not scale well to large-scale training.



Joint Image-Text Embedding

• Images and text are embedded into a 

common latent space.

• This facilitates many different 

applications



Retrieval: Image- and Video Search

• Image-Text pretraining enables text-to-image search

• We embed a text query, and l2-normalize it.

• We construct an “index” of images, by precomputed computing their l2-normalized 

embeddings.

• We then find the the image which best matches the text query

o “Best matches” means the lowest distance 

/ highest inner product

o Why are the two equivalent?



Text to Image Search

• Image-Text pretraining enables text-to-image search. 

• Demo / code for VGG Wise.

https://gitlab.com/vgg/wise/wise


Search between modalities

• This approach can be generalized to any modalities for which we can compute 

embeddings [ImageBind].

• And we can use transformers to produce embeddings for different modalities.

https://arxiv.org/pdf/2305.05665


Zero-Shot Recognition

• We can also easily perform “zero-shot” classification, by comparing the image embedding, 

to text embeddings for different class names.

• Allows us to build classifiers without any training data!

• Try the demo for Locked-Image Tuning.

https://google-research.github.io/vision_transformer/lit/
https://arxiv.org/pdf/2111.07991


Open-Vocabulary Tasks

• We can extend these to open-vocabulary detection and segmentation too in analogous 

ways.

• Train the model to recognize a set of “seen classes”, and we can then evaluate on 

“unseen”ones.

• Online demo for Owl-ViT.

https://ku-cvlab.github.io/CAT-Seg/
https://arxiv.org/pdf/2205.06230


Open-Vocabulary Tasks

• We can extend these to open-vocabulary detection and segmentation too in analogous 

ways.

• Train the model to recognize a set of “seen classes”, and we can then evaluate on 

“unseen”ones.

• Online demo for CAT-Seg.

https://ku-cvlab.github.io/CAT-Seg/
https://arxiv.org/abs/2303.11797


Generative Text Models

• We have discussed matching images / videos to text.

• What about generating text directly from the image?

From Gemini Tech Report.

https://arxiv.org/pdf/2312.11805


Generative vs Discriminative Models

• Informally

o Discriminative models can distinguish between different kinds of data instances.

o Generative models can generate new data instances

Two penguins walking

Two men in suits

A photo of two 
penguins 
walking

Discriminative Model Generative Model



Generative vs Discriminative Models

• Formally

o Discriminative models capture a conditional probability 𝑝 𝑦	 𝑥), where 𝑥 is the data 

instance, and 𝑦 is the label. 

o Generative models capture the joint probability, 𝑝(𝑥, 𝑦)



Transformers for Language Modelling

• Textual transformer in CLIP is just like a vision transformer:

o Tokenise the text, pass it through a transformer.

o Each token attends to each other token



Transformers for Language Modelling

• For language modelling, we predict the 

next text token given all previous text 

tokens.

• The next text token is simply a token from 

our vocabulary of tokens

o Therefore, simply a large 

classification problem.

o Llama has ~32K tokens, Gemini has 

256K vocabulary size.



Transformers for Language Modelling

• Transformers for language modelling need to be causal

o A token should only attend to previous tokens.

• Inference is also done sequentially

o We first predict Token 1.

o Then predict Token 2 given Token 1.

o Then Token 3, given Tokens 1 and 2 …

• Language models are therefore comparatively 

computationally expensive!

• Can we speed up training though?



Transformers for Language Modelling

• Training can still be done in parallel by making use of attention masks.

• We can process a sentence in parallel, but each word token only attends to previous ones. 

Apply the mask to 𝑄𝐾9

Figure from T5.

https://arxiv.org/pdf/1910.10683


Large Language Models

• Large Language Models are standard transformers that 

have been greatly scaled up!

• Not many architectural differences to what we’ve already 

discussed!

• Open-source models

o Llama, Mistral, Gemma, …

• Closed-source models

o GPT, Gemini, Claude …

https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2310.06825
https://arxiv.org/pdf/2403.08295


Generative Image Text Modelling

• Connect a vision encoder to a language decoder

• Both models are typically transformers

GIT: A Generative Image-to-text Transformer for Vision and Language

https://arxiv.org/pdf/2205.14100


Design Questions

• What image encoder to use?

• How do we “convert” vision tokens to a common 

space as the language model?

• Do we need to reduce the number of vision tokens 

(particularly for video)?

• What mixture of data do we include in our training 

dataset?

• Figures from MM1: Methods, Analysis & Insights 

from Multimodal LLM Pre-training

https://arxiv.org/pdf/2403.09611
https://arxiv.org/pdf/2403.09611


Vision Encoders

• Most works use strong, pretrained vision and language models.

• Language models are typically substantially larger (order of 10s of billions of parameters) 

than vision encoders (often less than a billion parameters)

• Why?

• Representation learning for images and video is harder than for text.

• We can pretrain text models from scraping web data; vision models are harder.

• Stay tuned for upcoming lectures on Representation Learning.



Vision Encoders

• In practice, image-text pretrained vision encoders (like CLIP and SigLIP) tend to work the 

best

• Intuitively, this makes sense as the model has been exposed to language during pretraining.

• Other vision encoders can work too.

Cambrian-1

https://arxiv.org/abs/2103.00020
https://arxiv.org/pdf/2303.15343
https://arxiv.org/pdf/2406.16860


Connecting Vision Encoder to Language Decoder

• To connect a vision encoder to a language decoder, we 

need to:

o Project vision tokens to the same dimensionality 

as used by the language model.

o Potentially reduce the number of vision tokens. 

Otherwise, the cost of processing them all with 

the language decoder is too large.

o Especially the case with high-resolution images, or 

videos.



Vision-Language Connector

• Average pooling to 𝐾 tokens.



Vision-Language Connector

• Learned cross-attention with 𝑲 query tokens.

• Self-attention when Query, Key and Values are 

projections of the same input, 𝑋.

• Cross-attention when Query is separate from the 

Keys and Values.

• Number of query tokens determines the number of 

output tokens.



Vision-Language Connector

• Learned cross-attention with 𝑲 query tokens.

• Used by multiple different models with different names:

o Perceiver Resampler, also used in Flamingo

o Q-Former used in BLIP.

o TokenLearner used in Mirasol.

o “Attention Pooling”

https://arxiv.org/pdf/2103.03206
https://arxiv.org/pdf/2204.14198
https://arxiv.org/pdf/2301.12597
https://arxiv.org/pdf/2106.11297
https://arxiv.org/pdf/2311.05698


Vision-Language Connector

• Convolutional Network with Adaptive Pooling.

• A small CNN on visual features maintains the locality of features.

• Adaptive average pooling can maintain a fixed number of tokens.

• Cross-attention does not preserve locality among tokens.

Honeybee: Locality-enhanced Projector for Multimodal LLM

https://openaccess.thecvf.com/content/CVPR2024/papers/Cha_Honeybee_Locality-enhanced_Projector_for_Multimodal_LLM_CVPR_2024_paper.pdf


Vision-Language Connector

• So which one to use? 

• Recent studies (MM1), have indicated that the biggest factor is the number of tokens, 𝐾, 

that are pooled.

o Trade-off being that it is more computationally expensive too.

• Convolutional connectors were found to be the best though.

• Also beneficial to use “two stage training” (LLaVa, Cambrian)

o First train only the connector

o Then finetune the whole model.

o This is intuitive, since the connector is the only randomly initialized part of the 

network to start with.

https://arxiv.org/pdf/2403.09611
https://arxiv.org/pdf/2304.08485
https://arxiv.org/pdf/2406.16860


Instruction Tuning

• Language models are pretrained with “next token prediction”.

• Predicting the next word does not align with what humans want

• For example, when asking a raw LLM a question, it will respond with other similar questions.

o These are the most likely completions based on the training data.

InstructGPT

https://arxiv.org/pdf/2203.02155


Instruction Tuning

• We need to finetune language or vision-language models to answer questions of interest.

• Instruction Tuning refers to finetuning on (Instruction, Input, Answer) triplets.

• A key component of assistants like ChatGPT, Gemini and Claude.



Instruction Tuning

• We need to finetune language or vision-language models to answer questions of interest.

• Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.

• Some tasks are naturally in an instruction-tuning format (ie Visual Question Answering)



Instruction Tuning

• We need to finetune language or vision-language models to answer questions of interest.

• Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.

• And others can be transformed into a question-answering format (ie classification)

o “What objects are present in this image?”



Instruction Tuning

• We need to finetune language or vision-language models to answer questions of interest.

• Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.

• Aim is to train on a diverse range of instructions, in the hope that we will be able to 

generalize better to unseen instructions.

• Instruct-BLIP shows that this is indeed the case.

https://arxiv.org/pdf/2305.06500


Instruction Tuning

• We need to finetune language or vision-language models to answer questions of interest.

• Instruction Tuning refers to training on (Instruction, Input, Answer) triplets.

• To generalize to a wide range of tasks, we need diverse datasets and tasks.

• A lot of empirical analysis to work out good mixtures and datasets.

• Lot of “secret sauce” goes into here.

Cambrian

https://arxiv.org/pdf/2406.16860


Credits and References

• Andrea Vedaldi’s lecture slides here.

• Andrew Zisserman’s lecture slides here.

• The Annotated Transformer

• The Illustrated Transformer

• Stanford CS231N: Deep Learning for Computer Vision

• Stanford CS224N: Natural Language Processing with Deep Learning

• Deep Learning Book by Ian Goodfellow

• All the papers linked in these slides

https://www.robots.ox.ac.uk/~vedaldi/teach.html
https://www.robots.ox.ac.uk/~az/lectures/index.html
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://jalammar.github.io/illustrated-transformer/
https://cs231n.stanford.edu/
https://web.stanford.edu/class/cs224n/
https://www.deeplearningbook.org/


Thank you!
Questions?
anurag.arnab@gmail.com


