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Abstract

Although humans can effortlessly recognise a scene in its totality, it is an extremely
challenging problem for computers which is why scene understanding remains one of
the fundamental problems in computer vision. This thesis concentrates on pixel-level
scene understanding tasks such as semantic- and instance-segmentation, which have
applications in diverse fields such as autonomous vehicles, medical diagnosis and
assistive technologies for the partially sighted among others.

Firstly, this thesis addresses the task of semantic segmentation by integrating mean-
field inference of a Conditional Random Field (CRF) with higher order potentials
directly into a deep neural network. This approach enables joint, end-to-end training of
both the parameters of the CRF and the underlying CNN, and achieved state-of-the-art
results on public leaderboards at the time of publication.

This method is then extended to the task of instance segmentation. In contrast to
previous work, the proposed formulation jointly processes all instances in the image.
As such, one pixel can only be assigned to one instance and the network must thus
learn to reason about occlusions between instances. Moreover, unlike previous work,
this approach can naturally segment “stuff” classes. This method also achieved
state-of-the-art results at the time of publication.

Realising the fact that pixel-level training data for segmentation is time-consuming and
thus expensive to obtain, this thesis then proposes a method of training semantic- and
instance-segmentation models with weaker supervision. In particular, annotations in
the form of bounding-boxes and image-level tags are considered, which are shown
to significantly reduce annotation time with a relatively small impact on the final
performance compared to a fully-supervised baseline.

Finally, this thesis studies the adversarial robustness of popular semantic segmentation
architectures. This topic is motivated by the fact that during the course of this thesis,
segmentation systems have become accurate enough to use in real-world applications,
and thus the security of models deployed in production is critical. The effect of
various architectural components on adversarial robustness are thoroughly evaluated,
and mean-field inference of CRFs, multiscale processing (and more generally, input
transformation) are shown to naturally implement concurrently proposed adversarial
defences.
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Chapter 1

Introduction

1.1 Scene Understanding in Computer Vision

Scene understanding is one of the fundamental problems in computer vision, and aims
to bridge the gap between how computers store visual information and how humans
comprehend it. Computers store images digitally as pixels, each with specific colour
intensity values. Humans, on the other hand, do not interpret images as a large matrix of
numbers, but rather extract relevant details from the image. Examples include the type
and number of objects present in the image, the affordances of the different objects, the
relationships between different objects in the scene, and forecasting how a scene will change
in the near future.

As shown in Figure 1.1, scene understanding has typically been studied as multiple
different tasks in the computer vision literature. A high-level summary of a scene can be
obtaining by predicting image tags that describe the objects present in the image (such as
“person” and “car”) or the scene (such as “city”). This task is known as image classification.
The object detection task, on the other hand, aims to localise different objects in an image by
placing bounding boxes around each instance of a predefined object category (Fig. 1.1b).

This thesis concentrates on pixel-level scene understanding problems such as semantic-
and instance segmentation. Semantic segmentation (Fig. 1.1c) aims for a more precise
understanding of the scene by assigning an object category label to each pixel within the
image. Instance segmentation extends this by also assigning a unique identifier to each
of the segmented objects in the image (Fig. 1.1d). It can thus be regarded as being at the
intersection of object detection (which localises different instances of an object, but at a
coarse bounding-box level) and semantic segmentation (which has no notion of instance of
the same object, but classifies individual pixels). These segmentation tasks are motivated by
their applications:
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(a) Input image (b) Object detection

(c) Semantic segmentation (d) Instance segmentation

Figure 1.1: Example of the scene understanding tasks, and their application to perception
for autonomous driving. This thesis focusses on semantic- and instance segmentation.
Semantic segmentation (c) labels every pixel in the image with an object class label. Instance
segmentation (d) extends this by identifying unique instances of an object class as well. It
is thus at the intersection of object detection (b) (which localises different instances of an
object, but at a coarse bounding-box level) and semantic segmentation (which operates at a
pixel-level, but has no notion of different instances of the same class). The results shown
here have been produced by the algorithms described in this thesis.

Autonomous vehicles Perception is a key component of self-driving cars, as they need
to understand their environment before planning the route ahead. Examples of this are
shown in Fig. 1.1. High accuracy for these perception algorithms are also of paramount
importance due to the safety-critical nature of this task. Self-driving cars also have the
potential to greatly reduce fatalities due to car accidents, and to decrease traffic and the
industry’s ecological footprint by reducing the number of vehicles required to meet an area’s
transportation requirements.

Medical diagnosis Computer vision algorithms can provide cost-effective solutions to
diagnose a wide range of medical conditions [79, 70, 268, 303, 199]. Automated algorithms
can also relieve specialist doctors from having to perform time-consuming annotations of
medical imagery, and can expand access to healthcare by providing diagnoses in areas
where specialist doctors are not available.
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(a) Smart-glasses for the
partially sighted

(b) Medical
imaging

(c) Photographic effects

Figure 1.2: Applications of segmentation: a) “Smart glasses” enhance the vision of the
partially sighted [124, 207]. b) The output of brain tumour segmentation algorithm from
MRI images [211]. c) Effects such as depth-of-field and stylisation can be automatically
applied once the person is segmented from the photo [262].

Image- and video-editing Accurately segmenting out objects from an image or video is
used for editing operations such as compositing, rig-removal and automatic depth-of-field
or bokeh effects (as shown in Fig. 1.2). These applications are ubiquitous in the digital- and
print-media industries.

AugmentedReality In augmented reality, objects and scenes in the real-world aremodified
with computer-generated information. As a result, such systems (an example being
augmented reality glasses) need a detailed and pixel-level understanding of the physical
world around them so that the digitally modified environment appears realistic.

Assistive technologies for the partially sighted There have been recent developments in
designing “smart glasses” for the blind and partially sighted [124, 292], as there are more
than 285 million people in the world with vision impairments that affect day-to-day living
[218]. These glasses understand the environment around them and stimulate the user’s
residual vision (as shown in Fig. 1.2), as about 85% of these people have some remaining
vision [218].

Note that though this thesis concentrates on semantic- and instance segmentation, many
other scene understanding problems are actively studied in the computer vision literature,
such as 2D- and 3D pose estimation, 3D reconstruction, depth estimation, scene flow
estimation, scene graph parsing, tracking and activity forecasting [95, 299, 4, 145, 156].

1.2 Challenges in pixel-level scene understanding

Whilst humans can effortlessly recognise everything in a scene, it is extremely challenging for
machines. This fact is reflected by performance of leading methods on various benchmarks.

3
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Image

Ground
truth

Figure 1.3: Object variability in the real world makes recognition difficult: Examples of
“chair” images from the Pascal VOC [81] dataset are shown, along with their segmentation
masks in the next row (red indicates “chair”, orange “table” and pink “person”; grey pixels
are “ambiguous”). Note the intra-class variation between chair instances in each image.
Furthermore, there are significant illumination and viewpoint changes across the images,
and there are also objects occluding the chairs. Chairs also contain thin and elongated
structures which are difficult to segment accurately.

For example, the state-of-the-artmethod on theCityscapes instance segmentation benchmark
[57] still only achieves a mean Average Precision (mAP) of less than 40 (the original baseline
approach achieved 4.6). As a result, we first discuss why scene understanding (and also
semantic- and instance segmentation in particular) are so difficult before describing the
overall approach of this thesis in the next section.

1.2.1 Object variability

Visual recognition systems need to generalise across large variations in the appearance of
an object due to physical, geometric and photometric factors such as viewpoint, occlusions,
illumination, blur and sensor noise, as shown in Fig. 1.3. Moreover, considerable intra-class
variation needs to be accounted for as well. Figure 1.3 shows several examples of “chairs”
in the Pascal VOC dataset [81] that all vary considerably among each other in visual
appearance. These significant differences in appearance must still be abstracted away by an
object recognition system in order to classify all inputs correctly.

Furthermore, as shown in Fig. 1.3, objects may also be heavily occluded, or be observed
at a small scale, such that the most salient landmarks of an object may not be visible at all.
Nevertheless, the aim of semantic- and instance-segmentation is still to classify each pixel
constituting the object correctly (potentially by exploiting the context around the occluded
object). Small and/or occluded objects are thus typically difficult to recognise, and this
is observed on benchmarks as well. On the COCO object detection challenge [180], the
performance measured in terms of the mAP for objects considered “small” (measured in
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Annotation Time
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Figure 1.4: The “curse of dataset annotation” [310]. Deep neural networks require a
lot of training data. However, annotations for complex tasks such as segmentation are
time-consuming and hence expensive to collect, which reduces the sizes of datasets for
these tasks. Figure from [310].

terms of number of pixels they occupy in the image) is about half that for objects considered
“large” [99]. Similarly, on the Cityscapes benchmark [57], the average Intersection over
Union (IoU) computed globally for all pixels of a given object class in the dataset is higher
than the IoU averaged over individual instances by about 30%. This also shows that current
state-of-the-art methods perform better on larger objects than on smaller objects.

1.2.2 Datasets and dataset bias

Large labelled datasets like ImageNet [71, 254] have driven the emergence of deep neural
networks as the de facto tool for classification tasks in computer vision. However, the ability
of deep neural networks to learn powerful feature representations automatically from data
also means that deep learning approaches to various computer vision problems all require
suitable datasets for training. This dependence of neural networks on large, labelled datasets
has been termed by Xie et al. [310] (among others) as the “Curse of dataset annotation” due
to the time, and thus cost, incurred in creating labelled datasets. This issue is exacerbated in
the case of segmentation where every single pixel in the image needs to be labelled, and is
illustrated by the Cityscapes dataset where each image took 90 minutes to label [57]. The
annotation cost also meant that only 5000 out of the 25000 images in the dataset were fully
annotated. As shown in Fig. 1.4, tasks that require more complex annotations, such as
segmentation, typically have smaller datasets due to the annotation costs involved.
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(a) Number of pixels per class (b) Number of instances per class

Figure 1.5: Statistics for the Cityscapes dataset [57]. The number of pixels, (a), are shown
for all (“thing” and “stuff” [91]) classes. The number of instances (b), are only shown for
“thing” classes. The axes are on a logarithmic scale, due to the imbalance in the classes.

Additionally, for segmentation tasks, annotations along the boundaries of the objects
typically have more errors than within the interior as these boundaries are more difficult
for annotators to label correctly. Furthermore, as there are substantially fewer pixels at the
boundaries of the object than the interior, it is difficult to learn models that are accurate at
boundaries of the object.

Moreover, datasets are imbalanced or biased in other ways [283]. Common segmentation
datasets like Cityscapes [57] and Pascal VOC [81] have a long-tailed distribution of objects
(Fig. 1.5) as some scenes and objects were more frequently observed when collecting the
dataset. Figure 1.5 also shows how some “stuff” [91] classes such as “road” and “vegetation”,
which are the easiest to classify as they have little intra-class variation and similar texture,
actually have the most labelled pixels. For other categories, the intra-class variability is
sometimes large, and the training set does not capture all possible visual appearances of
the class. This deficiency leads to models failing on unseen appearances in the test set or
when deployed in the real world. For example, models trained on the Cityscapes driverless
car dataset captured in Germany and Switzerland [57] perform significantly worse on road
scenes from other parts of the world [49]. The performance degradation in [49] was the
greatest for “thing” classes [91] with high intra-class variation or low number of training
examples such as “motorcycle”, “bicycle”, “rider” and “person”. Similarly, Zendel et al. [323]
also noted how extreme weather conditions and other hazards significantly reduce accuracy
of models trained on Cityscapes which does not have any weather variations.
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(a) (b)

Figure 1.6: The importance of context in scene understanding. Parsing (a) is difficult
for computer vision algorithms due to the similar appearance of the objects in the scene.
However, humans have no such difficulty as they recognise it as an image of a bedroom,
and have prior knowledge of the objects typically in a bedroom and its layout. This image is
from the ADE20K dataset [331]. (b) Oliva and Torralba [217] noted the strong assumptions
that observers made regarding object identities according to their size and location in the
scene. Observers described the scene as a car and a pedestrian in the street. However, the
“pedestrian” is actually the car that has been rotated by 90°.

1.2.3 Context and other priors for object recognition

Objects do not occur in isolation in natural scenes, but rather co-vary with other objects
and environments. As shown in Fig. 1.6, humans have the ability to exploit contextual
information at multiple levels [22, 53, 217], with examples including semantic co-occurence
(table and chairs or bed and pillows which are usually present in the same scene), spatial
configurations (a car is on the ground plane, and not in the air) and pose (cars are oriented
along the driving direction of a street) [217]. These contextual priors help humans to focus
on the salient parts of an image and quickly recognise objects in cluttered scenes [53].
However, exploiting contextual information, and capturing the real-world relationships
between objects is challenging for computer vision algorithms. Furthermore, it may also
be difficult to ensure that all relevant contextual relationships are present in the training
dataset, making it difficult to learn automatically from data.

1.2.4 Differences in scene understanding tasks

Note that examples which are easy for semantic segmentation, may be difficult for instance
segmentation. For example, Fig. 1.7 shows cases where there are multiple instances of the
same object with very similar visual appearance and texture. Here, classifying each pixel
with a predefined object class label is simpler than differentiating different instances of

7
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(a) (b) (c)

Figure 1.7: Examples that are difficult for instance segmentation, but not semantic segmen-
tation. (a) and (b) consist of many similar looking instances. Given an accurate appearance
model, the class label of all the instances can be obtained for all constituent pixels due to the
low intra-class variation. Conversely, the similar appearances of each of the instances, and
the fact that they occlude each other, makes distinguishing the individual instances difficult.
In (c), the man’s arm around the woman’s shoulder is difficult to associate with the right
person as it is disconnected (visually) from the man’s body.

the said class, which requires reasoning about the shape of the object class, and occlusion
relationships between different instances.

1.3 Approach

To address the aforementioned challenges in pixel-level scene understanding, this thesis
makes use of deep neural networks (DNNs) and Conditional Random Fields (CRFs), and
shows how they can be combined to provide the benefits of both approaches.

Deep neural networks have become the de facto tool for classification tasks in computer
vision as they are able to learn powerful feature representations automatically from data.
This makes them suited to dealing with the large variability of real-world data as long as
the training datasets are sufficiently large. However, structured prediction tasks such as
segmentation involve predicting many random variables that are statistically related (in
segmentation, each pixel can be associated with a random variable). Standard DNNs are
not able take these complex dependencies between multiple output variables into account.

On the other hand, Conditional Random Fields (CRFs), and probabilistic graphical
models in general, have long been used in computer vision for such structured prediction
tasks. CRFs provide a principled way to model the dependencies between the different
correlated variables being predicted, and thus to incorporate prior information about the task
being solved. The priors that can be encoded with CRFs are useful for dealing with limited
or biased data, explicitly encoding contextual priors and can also be used to incorporate
other information that is obvious to humans but difficult to extract automatically from data.

A desirable feature of neural networks is that they are trained “end-to-end” – a single
objective function is used to optimise all parameters in the differentiable network via
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stochastic gradient descent (SGD) or its variants. In contrast to traditional computer vision
algorithms, complex pre- or post-processing steps are usually not employed. This thesis
integrates inference of CRFs directly into deep neural networks so that the entire model can
still be trained end-to-end, thus obtaining the benefits of both DNNs and CRFs.

1.4 Thesis Outline

Chapter 2 Chapter 2 provides a background on DNNs and CRFs, which are used through-
out the rest of this thesis.

Chapter 3 Chapter 3 then addresses the task of semantic segmentation (Fig. 1.1c) by
integrating mean-field inference of a Conditional Random Field (CRF) with higher order
potentials into a deep neural network.

Chapter 4 We then extend the method from the previous chapter to perform the task of
instance segmentation (Fig. 1.1d) in Chapter 4.

Chapter 5 Both of the methods in the previous chapters are fully supervised, and require
training data with per-pixel annotation which is very time-consuming, and thus expensive,
to collect. To address this issue, Chapter 5 presents an approach of performing both semantic-
and instance-segmentation with weaker supervision in the form of bounding boxes and
image-level tags.

Chapter 6 During the course of this thesis, the performance of segmentation systems
have greatly increased to the level that they are suitable for use in real-world applications.
Consequently, the security of deep neural network models deployed in production becomes
more crucial. Chapter 6 considers this issue by studying the adversarial robustness of
common segmentation architectures to gain insight into how we can train models that are
both accurate and robust to adversarial attacks (modified images with minimal perceptual
differences to the original which cause a classifier to fail).

Chapter 7 Finally, we conclude in Chapter 7, by summarising the contributions in the
thesis and discussing open questions, future directions and the impact that this work
presented in this thesis has had on the field.

9
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Note that this is an integrated thesis, and that each of Chapters 3 through 6 have been
published at a leading computer vision conference or journal. The papers have only been
reformatted, and the supplementary material has been included as an appendix at the end
of the chapter. Each chapter is self-contained with its own related work section centred
around the contribution of the paper. These contributions are now detailed next.

1.5 Contributions

Chapter 3: Higher Order Conditional Random Fields in Deep Neural Networks Chap-
ter 3 proposes a Conditional Random Field (CRF) with higher order potentials for the
task of semantic segmentation (Fig. 1.1c). Furthermore, it shows how mean-field inference
of this CRF can be seen as a “layer” of a neural network. This is done by unrolling the
iterative mean-field inference algorithm to form a recurrent network which can then be
backpropagated through (previous work [329] had only shown this for a specific type of
pairwise potential). If a mean-field inference “layer” is appended to a neural network, the
parameters of the underlying neural network can always be optimised by backpropagation.
And if the parameters of the CRF’s potential functions are differentiable (as they are in this
case), they can be learned jointly with the parameters of the underlying neural network.
This method also achieved state-of-the-art results on two popular segmentation benchmarks
at the time of publication.

Chapter 4: Pixelwise Instance Segmentation with a Dynamically Instantiated Network
Chapter 4 extends the neural network from the previous chapter to perform the task of
instance segmentation. Most prior art modified objection detection architectures to output
segmentation masks instead of bounding boxes. However, these approaches all have a
common set of limitations: they all process each instance independently of one another,
meaning that one pixel can actually be assigned to multiple instances at the same time.
Consequently, occlusions between instances are handled very poorly. Our proposedmethod,
on the other hand, considers all instances jointly, and as each pixel can only belong to a single
instance, the network must learn to reason about occlusions. Furthermore, the proposed
method can handle a variable number of instances per image and requires no post-processing
to produce the final result, unlike the previous detection-based approaches. Additionally,
in contrast to detection-based approaches which are only suited for “thing” classes, the
proposed formulation can deal naturally with both “thing” and “stuff” classes. Finally,
the proposed method achieved state-of-the-art results on multiple instance segmentation
datasets at the time of publication.
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Chapter 5: Weakly- and Semi-Supervised Panoptic Segmentation Chapter 5 trains the
model from the previous chapter with weaker supervision: Instead of using pixel-level
segmentation masks as the ground truth, weaker annotations in the form of bounding boxes
and image-level tags (which specify if an object is present or not in the image) are used
as supervision. Furthermore, a combination of full supervision (pixel-level ground truth)
and weak supervision (bounding boxes and image-level tags) can be readily used as well.
To the best of our knowledge, this is the first work to train a model for non-overlapping
instance segmentation without full supervision. The approach, based on the Expectation
Maximisation (EM) algorithm, is demonstrated on multiple datasets, obtaining up to 95% of
fully-supervised performance with the same data, and reducing the estimated annotation
time by up to a factor of 35.

Chapter 6: On the Robustness of Semantic SegmentationModels to Adversarial Attacks
This chapter presents what to our knowledge is the first rigorous evaluation of adversarial
attacks onmodern semantic segmentationmodels, using two large-scale datasets. It analyses
the effect of different network architectures, model capacity and multiscale processing, and
shows that many observations made on the task of classification do not always transfer
to the more complex task of segmentation. Moreover, this chapter shows how mean-
field inference of CRFs, multiscale processing (and more generally, input transformations)
naturally implement recently proposed adversarial defences. However, in contrast to these
prior works, this chapter also shows how these defences are ineffectual as soon as knowledge
of them is used in the attack algorithm. This chapter will aid future efforts in understanding
and defending against adversarial examples, whilst in the shorter term, shows how to
effectively benchmark robustness and suggests which segmentationmodels should currently
be preferred in safety-critical applications due to their inherent robustness.

1.6 Publications

The following publications form the individual chapters of this thesis:
Chapter 3

Anurag Arnab, Sadeep Jayasumana, Shuai Zheng, Philip H.S Torr. Higher Order
Conditional RandomFields inDeepNeural Networks. European Conference on Computer
Vision (ECCV), 2016.

Chapter 4

Anurag Arnab, Philip H.S Torr. Pixelwise Instance Segmentation with a Dynamically
Instantiated Network. Computer Vision and Pattern Recognition (CVPR), 2017.
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Chapter 5

Qizhu Li*, Anurag Arnab*, Philip H.S Torr. Weakly- and Semi-Supervised Panoptic
Segmentation. European Conference on Computer Vision (ECCV), 2018.
* Joint first authors

Chapter 6

Anurag Arnab, Ondrej Miksik, Philip H.S Torr. On the Robustness of Semantic
Segmentation Models to Adversarial Attacks. To appear in Pattern Analysis and Machine
Intelligence (PAMI), 2019.
The version presented here has been accepted into PAMI, and is an extension of the
CVPR 2018 conference paper with the same title and authors.

Publications in related topics were also made during this thesis:

Anurag Arnab*, Carl Doersch*, Andrew Zisserman. Exploiting temporal context for
3D human pose estimation in the wild. Computer Vision and Pattern Recognition (CVPR),
2019.
* Joint first authors

Måns Larsson, Anurag Arnab, Shuai Zheng, Philip H.S Torr, Fredrik Kahl. Revisiting
Deep Structured Models for Pixel-Level Labelling with Gradient-Based Inference.
SIAM Journal on Imaging Sciences, 2018.

Anurag Arnab, Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Måns
Larsson, Alexander Kirillov, Bogdan Savchynskyy, Carsten Rother, Fredrik Kahl,
Philip Torr. Conditional Random Fields meet Deep Neural Networks for Semantic
Segmentation. IEEE Signal Processing Magazine, 2018.
Material from this paper was used in Chapter 2 (Background).

Qizhu Li*, Anurag Arnab*, Philip H.S Torr. Holistic, Instance-level, Human Parsing.
British Machine Vision Conference (BMVC), 2017.
* Joint first authors

Måns Larsson, Anurag Arnab, Fredrik Kahl, Shuai Zheng, Philip H.S Torr. A
Projected Gradient Descent Method for CRF Inference allowing End-To-End Training
of Arbitrary Pairwise Potentials. Energy Minimization Methods in Computer Vision and
Pattern Recognition (EMMCVPR), 2017.

Anurag Arnab, Philip H.S Torr. Bottom-up Instance Segmentation using Deep Higher
Order CRFs. British Machine Vision Conference (BMVC), 2016.
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Chapter 2

Background

This chapter provides a brief review of the two primary concepts used in this thesis: Deep
Neural Networks (DNNs) are discussed in Sec. 2.1, followed by a review of Conditional
Random Fields (CRFs) in Sec. 2.2, which are use to address labelling problems in computer
vision. The contributions of this thesis are detailed in Chapters 3 through 6, and each
chapter contains a literature review directly related to its contribution.

2.1 Deep Neural Networks

Deep neural networks, and particularly convolutional neural networks (CNNs) in computer
vision, have quickly become the standard tool for supervised learning following the success
of Krizhevsky et al. [157] in the ImageNet image classification challenge in 2012. The neural
network developed by [157], known as AlexNet, significantly outperformed all other entries
based on traditional object recognition pipelines. These traditional methods can be broadly
categorised into pipelines consisting of three separate steps: 1) Computing local feature
descriptors (such as SIFT [191] and HOG [67]) from interest points [202, 203] detected in the
image, 2) Aggregating these local descriptors into global descriptors using bag-of-visual
word histograms [269, 60] or Fisher vectors [230] and 3) Classifying these global descriptors
with support vector machines [58]. The parameters in all but the final classification step
were tuned manually.

Deep neural networks, such as AlexNet, in constrast consist of a single model whose
parameters are all optimised jointly and learned from data. Concretely, a neural network is
a function f mapping data x (for example, an image) to an output y (for example, the label
describing the image). The function f = gL ◦ gL−1 . . . ◦ g1 is the composition of a sequence
of simpler functions gi which are known as layers [294]. If we denote x1,x2, . . . ,xL as the
outputs of each layer of the network, then each intermediate output xi = gi(xi−1;wi) is
computed from the previous output xi−1 by applying the function gi with parameters wi.
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2. Background

Note that x0 = x is the network input, and xL = y is the network output. The parameters of
all layers of the network,w, are learned by stochastic gradient descent (SGD) [246], or one of
its variants [235, 140, 322], using backpropagation to compute the gradients of a scalar-valued
loss function with respect to all parameters in the network. The intermediate outputs of
the network, x1, . . . ,xL−1 can thus be thought of as the intermediate representations of the
data learned by the network. In popular neural network architectures, the layer functions,
gi, consist of convolutional operations, elementwise non-linearities (such as rectified linear
units (ReLUs) [212]) and pooling operations.

Although AlexNet [157] was a major breakthrough in the ImageNet image classification
challenge, CNNs had been successfully applied to digit classification in 1989 [166]. Further-
more, the backpropagation algorithm for efficiently computing the gradients used by SGD
was published in 1986 [253]. It has primarily been the emergence of large-scale datasets
such as ImageNet [71, 254] and the parallel computational power of graphics processing
units (GPUs) that have enabled neural networks to learn effective representations from data
and become very successful in most machine learning tasks today. The primary algorithmic
advances since the 1980’s have included the ReLU non-linearity [212], regularisation meth-
ods such as dropout [271] and batch normalisation [130], improved initialisation methods
[102, 118] and residual connections [117] which enable training networks with much greater
depth and modelling capacity.

Network architectures such as AlexNet [157], VGG [267] and ResNet [117] have initially
been designed for the image classification task and trained with the large ImageNet
dataset. However, as detailed in the next sections, they can be adapted for more complex
scene understanding tasks such as semantic segmentation (Sec. 2.1.1) and object detection
(Sec. 2.1.2). The labelled datasets for these tasks are however not as large as ImageNet. This
problem can be bypassed by “fine-tuning” a network that has been trained on ImageNet for
downstream tasks that have less data. More concretely, the layers of the network for the
downstream task that are identical to ImageNet-trained network can be initialised with its
parameters. This method has been shown to perform better than randomly initialising the
network [100, 189], and enables training on a different task with smaller labelled datasets.

2.1.1 Networks for semantic segmentation

Akey idea to extendingCNNsdesigned for image classification to pixel-level prediction tasks
such as semantic segmentation is realising that a fully-connected layer can be considered
a convolutional layer, where the filter size is equal to the size of the input feature map
for that layer [101, 189]. Long et al. converted the fully-connected layers of AlexNet [157]
and VGG [267] into convolutional ones and named such networks “Fully Convolutional
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2.1. Deep Neural Networks

Figure 2.1: Fully convolutional networks: Fully connected layers can easily be converted into
convolutional layers by recognising that a fully-connected layer is simply a convolutional
layer where the size of the convolutional filter and input feature map are identical. This
enables CNNs trained for image classification to output a coarse segmentation when the
input is a larger image. This simple method enables good initialisation and efficient training
of CNNs for pixelwise prediction. Figure from [189].

Networks” (FCNs). These networks can operate on images of any size as they only consist of
convolutional-, pooling- and RelU non-linearity layers which are all dimension independent,
making them suitable for pixel-level prediction tasks. However, due to the pooling layers
within the network, the output would be a downsampled version of the input, as shown
in Fig. 2.1. Common architectures such as AlexNet, VGG and ResNet all consist of five
pooling layers which downsample the input by a factor of 2, leading to an output that is
downsampled by a factor of 32. In the most rudimentary version of FCN, Long et al. [189]
showed that simply bilinearly upsampling the coarse predictions up to the original size of
the image could reach state-of-the-art performance at the time. The FCN network proposed
by Long et al. [189] could be initialised with all the parameters of an ImageNet-trained CNN
and fine-tuned on smaller datasets, leading to significantly improved results over a network
initialised with random weights. Moreover, as it was simple to implement, and significantly
outperformed competing methods at the time, it has been improved further in numerous
subsequent works.

A shortcoming of the FCN network was that it tended to produce quite coarse and
“blobby” results, as the max-pooling layers throughout the network resulted in spatial
information being lost. Consequently, fine structures and object boundaries were typically
segmented very poorly. Completely removing pooling layers from a CNN architecture for
segmentation would not solve this problem, as layers later on in the network would not
have sufficient context or “receptive field” to make a good prediction. To combat this issue,
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2. Background

(a) (b) (c)

Figure 2.2: The red dots show the convolutional filter weights for a filter with a dilation rate
of 1 (a), 2 (b) and 4 (c). The receptive field, visualised by the blue cells, is 3× 3 in (a), 7× 7
in (b) and 15× 15 in (c). Thus, increasing the dilation rate exponentially with respect to the
number of layers increases the receptive field exponentially as well, whilst the number of
parameters grows only linearly. Without any dilation, the receptive field would increase
only linearly with the number of layers. Figure from [319].

Atrous [44] or Dilated [319] convolutions were proposed (inspired by the “algorithme à
trous” used in computing the undecimated wavelet transform [126]). As shown in Fig. 2.2,
dilated convolutions allow the receptive field of a convolutional filter to be increased without
increasing the number of parameters compared to an undilated filter. In [44] and [319], the
last two max-pooling layers were removed, and dilated convolutions were used thereafter
to ensure a large receptive field. Note that all max-pooling layers in the network were not
removed due to the memory requirements of processing images at full resolution.

Otherworks have learnedmore complex networks to upsample the low-resolution output
of an FCN: in [250, 215], an additional “decoder” network is employed which progressively
upsamples the initial prediction to obtain the final, full-resolution output. In [250, 215],
the “decoder” subnetwork contained as many layers as the original “encoder” part (an
image-classification CNN), and such networks are typically referred to as “encoder-decoder”
architectures. Ghiasi and Fowlkes [97] on the other hand learned the basis functions with
which to upsample for a coarse-to-fine architecture.

Another avenue of improving FCN was to incorporate it within a structured prediction
framework. Chen et al. [44] used the outputs of an FCN as the unary potentials of a
DenseCRF model (detailed in Sec. 2.2). The smoothness priors encouraged by the CRF
improved results, and provided sharper boundaries as well. However, Chen et al. [44]
used the DenseCRF model as a separate module applied as post-processing to an FCN. In
Chapter 3, we show howmean-field inference of CNNs can be seen as a layer of a CNN, and
thus incorporated directly into a deep network. This formulation enables joint optimisation
of the parameters of both the CNN and CRF, and leads to improved accuracy.
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(a) Result before NMS (b) Result after NMS

Figure 2.3: Object detectors score region proposals with the likelihood of containing the
target object (a). Non-maximal suppression (NMS) is used in object detection algorithms to
remove duplicate detections of the same object (b). These duplicates are present because
multiple proposals covering the same object (a) were processed.

2.1.2 Networks for object detection

Object detection is the problem of localising objects (of predefined categories) in an image
with a bounding box encompassing them. We first consider traditional approaches to
addressing this problem, before describing how deep neural networks have been used.

2.1.2.1 History of object detection

Object detection was originally accomplished using a sliding window approach – a detection
system would process a “window” of an entire image, and perform a binary classification
of whether a particular object class was present in it or not [290, 297, 67]. These sliding
windows were processed at multiple scales and aspect ratios in order to detect different
objects. However, since this could result in multiple, overlapping predicted bounding boxes
of the same object, a greedy, non-maximal suppression post-processing step was performed
to remove duplicate detections [32, 88] as shown in Fig. 2.3.

An alternative approach to sliding windows is the use of region proposals. Here, a pool
of (probably overlapping) image regions are first proposed, each of which is a candidate
object. These candidates are then scored with how likely they are to contain the target object
class. Region proposals can be seen as a method of decreasing the search space of sliding
windows (which need to computed at multiple scales and aspect ratios). Common region
proposal methods such as Selective Search [288] and MCG [5] were based on performing
oversegmentations [89, 263] of images and grouping them into regions. Region proposals,
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(a) R-CNN [100] (b) Fast R-CNN [98] (c) Faster R-CNN [243]

Figure 2.4: R-CNN (a) was one of the first object detection systems using neural networks. It
used region proposals from an external system to crop out part of the input image which was
then classified with an image classification network designed for ImageNet. Fast R-CNN
(b) significantly increased the speed of R-CNN by computing convolutional features once
for the entire region, and then pooling them for each individual proposal which were then
subsequently classified. Finally, Faster-RCNN (c) generates region proposals in the network
itself using a Region Proposal Network (RPN). Images are from [115].

unlike sliding windows, do not have specific aspect ratios or scales, and do not uniformly
tile the image.

2.1.2.2 Region-based CNNs for detection

The Region-CNN (R-CNN) framework proposed byGirshick et al. [100] used neural networks
to implement a region proposal-based object detection system. In R-CNN, object proposals
were generated by an external system (such as [288] or [5]), and used to crop a portion of
the image, as shown in Fig. 2.4(a). These proposals were then classified into one of the
predefined object categories using an image-classification CNN. Bounding box regression
was subsequently performed to refine the initial proposal’s bounding box. Additionally,
Girshick et al. [100] were among the first to perform transfer learning with CNNs by showing
that a neural network trained on the large ImageNet dataset could be “fine-tuned” for the
smaller Pascal VOC detection dataset.

In the subsequentwork of Fast-RCNN,Girshick [98] accelerated this pipeline significantly
by computing convolutional features once over the whole image, and then pooling the
features for each object proposal. The object proposals, however, were still generated
by external systems using handcrafted features. This limitation was addressed in Faster-
RCNN [243] where the object proposals were generated by the neural network itself to
improve both accuracy and runtime. Specifically, the authors introduced a Region Proposal
Network (RPN) which produced object proposals by predicting the offset with respect to
predefined “anchor boxes”. These object proposals were then classified using the same
network as Fast-RCNN.
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Although this line of work (summarised in Fig. 2.4) has progressively incorporated more
and more elements of an object detection system into a neural network that is trained end-to-
end, non-maximal suppression still remains a post-processing step performed at inference
time in state-of-the-art approaches. Furthermore, note that these detection algorithms all
process each object proposal independently of each other, and it is only the hand-crafted
non-maximal suppression post-processing step that considers all the predictions to produce
the final, refined output.

2.1.2.3 Single stage detectors

The R-CNN family of object detectors, from Sec. 2.1.2.2, are sometimes referred to as
“two-stage detectors” as the model first produces a set of of object proposals which are
subsequently classified. Single-stage detectors, in contrast, do not have a region proposal
stage.

The YOLO [241] detector splits an image into a predefined grid. For each cell in the
grid, the network predicts if an object category is present or not and also its bounding box
coordinates relative to this cell. The SSD detector [185] uses the same idea and proposes
numerous modifications which improve both the accuracy and runtime of single-stage
detectors. Single-stage detectors do not use explicit region proposals, and compensate
for this with the bounding box regression that is performed by the network. An earlier
work [167] also concluded that explicit region proposals contributed little to the overall
performance of R-CNN [100].

In practice, two-stage detectors are typically more accurate than single-stage methods,
but are also slower. An in-depth study of different CNN-based detection algorithms and
their speed/accuracy trade-offs can be found in [129].

2.1.3 Shortcomings of neural networks

Deep neural networks have provided significant performance improvements in a number of
classification and regression tasks [157, 117, 276, 125]. However, a common criticism is that
they are not interpretable as their complexity means that one does not know why a neural
network made a particular classification. This problem is illustrated by the phenomenon of
adversarial examples [278] where a neural network misclassifies an (artifically created) input
that hasminimal perceptual differences to an input that it classified correctly. Furthermore, a
theoretical understanding of why neural networks perform so well when they are optimised
with stochastic gradient descent (SGD) [52, 136] – which can converge to poor local optima,
and also converge very slowly – and why batch normalisation is effective [255, 25, 316]
remain open questions.
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2.2 Solving labelling problems with Conditional Random Fields

Many problems in computer vision, such as semantic segmentation, involve assigning a label
to every pixel in the image, where the labels of each of the pixels are statistically related to
each other. These can be formulated as discrete labelling problems where each node (which
corresponds to each pixel in semantic segmentation) is assigned a discrete label (its object
class). A common approach is to represent this labelling problem as a probabilistic graphical
model, where the idea is to introduce a set of random variables X = {X1, X2, . . . , XN}
corresponding to the set of nodes, V = {1, 2, . . . , N}. Each discrete random variable Xi is
associated with a node i ∈ V and takes on a label l from the label set L = {l1, l2, . . . , lL}
based on the observed image I. The labels are defined by the application – in semantic
segmentation, each label corresponds to an object class defined in the dataset, such as “car”
or “person”. Furthermore, to model the relationships between different random variables, a
neighourhood system is also defined, where Ni denotes the set of all neighbours of variable
Xi.

Any possible assignment of labels to the random variables is called a “configuration”
or a “labelling”, which we denote as x = (x1, x2, . . . , xN ) where xi is the label for the
ith variable. Probabilistic graphical models then model the joint, Pr(x, I), or conditional,
Pr(x|I), probability distribution of the random variables. Models of the joint distribution
are known as Markov Random Fields (MRFs), and models of the conditional distribution
are known as Conditional Random Fields (CRFs). Our goal is then to find the most probable
assignment, x∗, which is defined as

x∗ = arg max
x∈LN

Pr(x|I), (2.1)

and known as the maximum a posteriori (MAP) solution. In the general case, obtaining the
MAP solution is an NP-hard problem as it involves enumerating LN possible configurations.
In other words, the complexity of the problem scales exponentially with the number of
variables being inferred. For example, the semantic segmentation problem on the Cityscapes
dataset [57] involves L = 19 labels, and N = 2048 × 1024 ≈ 2 × 106 variables (since each
pixel is a random variable). However, a number of approximate inference algorithms, or
exact inference algorithms for specific cases, have been developed and are widely used
in computer vision [153, 28, 298, 134]. In this section, we discuss Conditional Random
Fields (CRFs) and mean-field inference for them. A more detailed overview of probabilistic
graphical models can be found in [152, 18, 113].
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2.2.1 Conditional Random Fields (CRFs)

Conditional Random Fields model the conditional probability distribution, Pr(x|I), of the
hidden variables x given the observed image, I. They are used in the segmentation problems
studied in this thesis as they alleviate the need to model the observed data [165].

A probability distribution is a CRF if and only if it satisfies the following properties

Pr(x|I) > 0, ∀x ∈ LN (Positivity) (2.2)

Pr(xi|{xj : j ∈ V − {i}}, I) = Pr(xi|{xj : j ∈ Ni}, I), ∀i ∈ V (Markovian). (2.3)

The Markovian property says that each variableXi is conditionally independent from
all other variables given the set of all its neighbours Ni. To this end, we define a set of
cliques c ∈ C where each clique c denotes a set of random variables which are conditionally
dependent on each other. A potential function ψc(xc|Ic) is also defined for each clique where
Ic corresponds to the observed variables in the clique c. According to the Hammersley-
Clifford theorem [109], the conditional probability distributionPr(x|I) is a Gibbs distribution
that can be expressed as the product of potential functions

Pr(x|I) =
1

Z(I)

∏
c∈C

exp (−ψc (xc|Ic)) , (2.4)

=
1

Z(I)
exp

(
−
∑
c∈C

ψc(xc|Ic)

)
. (2.5)

Here,Z(I) =
∑

x

∏
c∈C exp(−ψc(xc|Ic)) is a normalising constant knownas the “partition

function” which ensures that the probabilities sum to 1. Note that it is a function of
the observed image I and the summation is only over the possible label configurations.
Additionally, as shown in Fig. 2.5, a CRF and its neighourhood system can be represented
as a graph where each random variable corresponds to a vertex, and relationships between
vertices are represented by edges [152, 238].

The negative log-likelihood of the conditional probability is known as the energy
function, E,

Pr(x|I) =
1

Z(I)
exp(−E(x|I)), (2.6)

E(x|I) =
∑
c∈C

ψc(xc|Ic), (2.7)

and fully describes the model. As a result, the MAP estimate of the conditional probability
corresponds to the minimum of the energy function (which as aforementioned, is intractable
to solve in the general case).

x∗ = arg max
x

Pr(x|I) = arg min
x

E(x|I). (2.8)
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Figure 2.5: Diagram of a CRF: The hidden variables, Xj are represented by white circles,
and the observed variables, Ij are represented by grey circles. The edges between observed
and hidden nodes represent the unary potentials. The edges connecting the hidden nodes
represent the neighbourhood system of the CRF. In this case, each node is connected to its
four immediate neighbours, and the edges between every two hidden nodes represent the
pairwise potentials.

In this thesis, inference of CRFs refers to estimating the MAP solution, or equivalently,
minimising the energy E. The next section now details the CRF models that are used in
segmentation problems.

2.2.2 CRF models

CRF models typically consist of unary, pairwise and higher order potentials, where the size
of the cliques are one, two and three or more respectively,

E(x|I) =
∑
i∈V

ψi(xi) +
∑
i

∑
j∈Ni

ψi,j(xi, xj) +
∑
h∈H

ψh(xh). (2.9)

The unary term, ψi(xi), is defined over a clique of one variable and captures the
correlation between an unobserved Xi variable and the observed evidence, Ii. It is typically
obtained from a classifier, as the negative log-likelihood of variableXi taking label xi, which
could be a fully convolutional neural network as described in the Sec. 2.1.1. With only a
unary term, each variable xi would be predicted independently of each other. As local
evidence is usually noisy (Fig. 2.6), this usually leads to suboptimal results.

The pairwise term, ψi,j(xi, xj), models interactions between pairs of variables, xi and
xj . It is usually used to encourage predictions to be smooth by encouraging neighbouring
variables to take on the same label.

Higher order terms, ψh(xh), act on cliques containing more than two variables and
encourage higher-order consistency constraints. These include consistency over larger
regions [147], consistency with respect to other scene understanding algorithms [164, 318],
and co-occurence priors [162].
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2.2. Solving labelling problems with Conditional Random Fields

As pairwise terms are common in most CRF models used in computer vision problems,
we now consider them in more detail.

Pairwise terms Pairwise terms generally encourage smoothness in the labelling by en-
couraging a pair of neighbouring variables to take on the same label. An example is the
contrast-sensitive Potts model:

ψi,j(xi, xj) =

{
0 if xi = xj

κ(Ii, Ij) otherwise.
(2.10)

Here, no cost is incurred if two variables Xi and Xj take on the same label. Otherwise, a
penalty dependent on the image features is used. A common approach [154] is to use a
mixture of Gaussian kernels over intensity values, f , and positional features p,

κ(Ii, Ij) = w1 exp

(
−|pi − pj |

2

2θ2
α

− |fi − fj |
2

2θ2
β

)
+ w2 exp

(
−|pi − pj |

2

2θ2
γ

)
. (2.11)

Here, w1 and w2 are the co-efficients of the kernel components whose bandwidth is
determined by the θ hyperparameters. The first kernel is an edge-preserving bilateral filter
and encourages pixels with similar appearance to take on the same label. The second kernel
is a Gaussian smoothing filter which enforces spatial smoothness by removing isolated, and
thus noisy, regions [154].

Early works used four- or eight-neighbourhood connectivity (Fig. 2.5) for the pairwise
terms, which we denote as “Grid-CRF”. Such models were popular as inference algorithms
(which had theoretical guarantees and were in some cases exact) existed for these models
which were based on reducing the energy minimisation problem (Eq. 2.8) to the minimum
cut in a graph [153]. Grid-CRF models, however, have limited expressivity as they are not
able to model long-range interactions between variables. This problem is remedied by
considering densely-connected graphs where every pair of pixels is connected. The primary
challenge for densely-connected graphs is the prohibitive run-time for graph-cut based
inference methods. However, for models with pairwise potentials that are a mixture of
Gaussian kernels (Eq. 2.11), fast-run times are achievable using the permutohedral lattice
filtering method [2] and approximate, parallel mean-field inference [154]. Krähenbühl et
al. [154] showed that with parallel mean-field inference, the runtime was only 0.2 seconds
for an image from the MSRC dataset [266], compared to 72 hours for graph-cuts [153].

In practice, the more expressive densely-connected pairwise model achieves the best
results and runtime. This result is shown in Fig. 2.6 which illustrates how segmentation
quality has been improved with densely-connected pairwise terms and more accurate unary
potentials from CNNs. The next section provides an overview of mean-field inference,
which facilitates densely-connected pairwise terms.
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Figure 2.6: The evolution of semantic segmentation systems. The first row shows the early
“TextonBoost” work [266] that computed unary potentials using handcrafted Texton [266] features
and employed a CRF with limited 8-connectivity. The DenseCRF work of [154], shown in the second
row, used densely connected pairwise potentials and approximate mean-field inference. The more
expressive model achieved significantly improved performance. Numerous works, such as [44], have
replaced the early hand-crafted features with deep neural networks which can learn features from
large amounts of data and used the outputs of a CNN as the unary potentials of a DenseCRF model.
In fact, works such as [189] showed that unary potentials from CNNs (without any CRF) on their
own achieved significantly better results than previous methods. Subsequent methods (such as the
algorithm described in Chapter 3) have combined inference of a CRF within the deep neural network
itself to obtain state-of-the-art results. Result images for this figure were obtained using the publicly
available code of [163, 154, 44]. The final row shows the result from the algorithm in Chapter 3.

2.2.3 Mean-field inference

Mean-field inference approximates a complex probability distribution, P , with a simpler
distribution, Q. Inference problems, such as finding the MAP solution, are then performed
on this simpler distribution as a replacement for the actual probability distribution (such
as the one defined by the CRF) of interest. This technique is employed when performing
inference directly on P is intractable.

Thus given a complex probability distribution, P (x), which one cannot solve for, the
main steps are as follows:

1. Define a function that allows us to compare the similarity between the complex,
intractable distribution, P and its tractable approximation Q.

2. Specify the class of probability distributions in which we want to find a similar
distribution Q.
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2.2. Solving labelling problems with Conditional Random Fields

3. Find Q from the chosen class that is the closest to P .

4. Solve the inference problem for Q.

We now detail these steps below. A more detailed analysis of mean-field inference can be
found in [113].

Distance function A natural measure to measure the similarity of two probability distri-
butions, P and Q is the KL divergence, DKL(Q||P ):

DKL(Q||P ) =
∑
x

Q(x) log
Q(x)

P (x)
(2.12)

=
∑
x

Q(x) logQ(x)−
∑
x

Q(x) logP (x). (2.13)

The KL divergence satisfies the basic properties of an error measure as DKL(Q||P ) ≥ 0

for all P and Q, and DKL(Q||P ) = 0 if and only if P = Q. However, it is not a distance
metric as it is not commutative,DKL(Q||P ) 6= DKL(P ||Q) and it does not satisfy the triangle
inequality either.

Substituting the Gibbs distribution of the CRF (Eq. 2.6) into the KL divergence (and
omitting the conditioning on I to simplify the notation), we obtain

DKL(Q||P ) = −
∑
x

Q(x) log

(
1

Z
exp (−E(x))

)
+
∑
x

Q(x) logQ(x) (2.14)

=
∑
x

Q(x)E(x) + logZ +
∑
x

Q(x) logQ(x). (2.15)

For the second term, we used the fact that
∑

xQ(x) = 1. Since logZ is a constant, minimising
the KL divergence between Q and P is equivalent to minimising

F (Q) =
∑
x

Q(x)E(x) +
∑
x

Q(x) logQ(x). (2.16)

The first term is thus the expected value of the energy, E(x), under the distribution Q(x)

whilst the second term is the negative entropy of Q(x).
Expanding the first term further, and rearranging the order of summation, we obtain∑

x

Q(x)E(x) =
∑
c∈C

∑
x

Q(x)ψc(xc). (2.17)

For a given clique c, the summation over x can be broken down further into a sum over the
variables within the clique c, and those variables not within c, which we denote as c′. Thus,∑

x

Q(x)ψc(xc) =
∑
xc

∑
xc′

Q(x)ψc(xc) (2.18)

=
∑
xc

ψc(xc)
∑
xc′

Q(x). (2.19)
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Note that we can move ψc(xc) outside the last summation as it is constant as x′c varies.
Observing that

∑
xc′
Q(x) is the marginal probability,Q(Xc = xc), Eq. 2.17 can be written as

Q(x)E(x) =
∑
c∈C

∑
xc

ψc(xc)Q(xc). (2.20)

In other words, the expected value of the energy, E, under the distribution Q is equal to the
sum of the expected clique energies, ψc(xc).

Class of distributions for Q The simplest choice of Q, and also the naïve mean-field
approximation, is to define Q as a product of independent distributions. Defining a
distribution for each random variable Xi, we obtain

Q(X = x) =
∏
i∈V

Q(Xi = xi). (2.21)

An analysis of this simple approximation can be found in [113]. An advantage of it is
that the negative entropy term from Eq. 2.16 decomposes into

Q(x) logQ(x) =
∑
i∈V

∑
l∈L

Q(Xi = l) logQ(Xi = l). (2.22)

Combining the above equations, the term minimised by the KL divergence is thus

F (Q) =
∑
x

Q(x)E(x) +
∑
x

Q(x) logQ(x). (2.23)

=
∑
c∈C

∑
xc

ψc(xc)
∏
i∈c

Q(xi) +
∑
i∈V

∑
l∈L

Q(Xi = l) logQ(Xi = l). (2.24)

Minimising the KL divergence To find the fully-factorised distribution Q that is closest
to the original CRF distribution P , we formulate the optimisation problem

minimise
Q(x)

F (Q) (2.25)

subject to
∑
l∈L

Q(Xi = l) = 1 ∀i ∈ V

This problem is approached with Lagrange multipliers. Denoting the Lagrange parame-
ters as λi, the Lagrangian can be written as

L(Q,λ) = F (Q) +
∑
i∈V

λi

(∑
l∈L

Q(Xi = l)− 1

)
. (2.26)

Taking the partial derivative of L(Q,λ) with respect to an element Q(Xi = l), setting it
to zero, rearranging terms and renormalising [113] leads to the mean-field update for the
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marginal distribution of variable i for label l, Q(Xi = l), as

Qt+1(Xi = l) =
1

Zi
exp

−∑
c∈C

∑
{xc|xi=l}

Qt(xc−i)ψc(xc)

. (2.27)

where Qt is the marginal after the tth iteration, xc an assignment to all variables in clique c
and xc−i an assignment to all variables in c except for Xi. The normalisation constant, Zi, is
defined as

Zi =
∑
l∈L

exp

−∑
c∈C

∑
{xc|xi=l}

Qt(xc−i)ψc(xc)

. (2.28)

Note that by substituting Eq. 2.28 into Eq. 2.27, we can see that the mean-field update thus
involves a softmax operation to normalise the values, ensuring that the marginal distribution
Q is valid (non-negative and sums to 1) after each iteration. The mean-field update for the
DenseCRF model [154] with unary and pairwise potentials is thus

Qt+1(Xi = l) =
1

Zi
exp

−ψi(l)−∑
l′∈L

∑
j 6=i

Q(Xj = l′)ψi,j(l, l
′)

 . (2.29)

Updating each marginal distribution, Qi, sequentially will converge to a local minimum
[113, 152] (note that one cycle through all the indices, i, is an “iteration” that updates t).
However, for densely connected pairwise terms, this means that updating all N marginal
distributions has a time complexity of O(N2). This is because the update for each variable
requires a summation involving all other variables. This quadratic complexity is prohibitive
for the large graphs typically involved in computer vision problems. Krähenbühl et al. [154],
however, showed that using fast filtering techniques [2] which can be used with Gaussian
pairwise potentials such as Eq. 2.11, all the marginal distributions could be updated in
parallel with a time complexity of O(N). Although this parallel update has no convergence
guarantees, it has been empirically observed to converge [154] and is widely used in practice
as it makes inference of DenseCRF’s practical. Finally, note that as Q is fully factorised, its
MAP solution is simply the maximiser of each of its marginals.

The next chapter now extends the pairwise model of DenseCRF with more expressive
higher order potentialswhich improve accuracy in semantic segmentation problems. Parallel
mean-field inference is performed to obtain the final solution, and its iterations are unrolled
to form a differentiable recurrent neural network. This enables joint optimisation of both
the parameters of the underlying CNN which produce the unary potentials, and the CRF
with higher order potentials using stochastic gradient descent.
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Chapter 3

Higher Order Conditional Random
Fields in Deep Neural Networks

This paper addresses the problem of semantic segmentation using deep learning. Most
segmentation systems include a Conditional Random Field (CRF) to produce a structured
output that is consistent with the image’s visual features. Recent deep learning approaches
have incorporated CRFs into Convolutional Neural Networks (CNNs), with some even
training the CRF end-to-end with the rest of the network. However, these approaches have
not employed higher order potentials, which have previously been shown to significantly
improve segmentation performance. In this paper, we demonstrate that two types of higher
order potential, based on object detections and superpixels, can be included in a CRF
embedded within a deep network. We design these higher order potentials to allow inference
with the differentiable mean field algorithm. As a result, all the parameters of our richer
CRF model can be learned end-to-end with our pixelwise CNN classifier. We achieve
state-of-the-art segmentation performance on the PASCAL VOC benchmark with these
trainable higher order potentials.

3.1 Introduction

Semantic segmentation involves assigning a visual object class label to every pixel in an
image, resulting in a segmentation with a semantic meaning for each segment. While
a strong pixel-level classifier is critical for obtaining high accuracy in this task, it is also
important to enforce the consistency of the semantic segmentation output with visual
features of the image. For example, segmentation boundaries should usually coincide with
strong edges in the image, and regions in the image with similar appearance should have
the same label.

Recent advances in deep learning have enabled researchers to create stronger classifiers,
with automatically learned features, within a Convolutional Neural Network (CNN) [157,
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Pixelwise CNN Higher Order CRF 

Object Detector 

Superpixel Generator 

Baseline Superpixels only Detections only 

Input Final Result 

trained end-to-end 

Figure 3.1: Overview of our system. We train a Higher Order CRF end-to-end with a
pixelwise CNN classifier. Our higher order detection and superpixel potentials improve
significantly over our baseline containing only pairwise potentials.

267, 189]. This has resulted in large improvements in semantic segmentation accuracy on
widely used benchmarks such as PASCAL VOC [81]. CNN classifiers are now considered
the standard choice for pixel-level classifiers used in semantic segmentation.

On the other hand, probabilistic graphical models have long been popular for structured
prediction of labels, with constraints enforcing label consistency. Conditional Random
Fields (CRFs) have been the most common framework, and various rich and expressive
models [163, 164, 296], based on higher order clique potentials, have been developed to
improve segmentation performance.

Whilst some deep learning methods showed impressive performance in semantic
segmentation without incorporating graphical models [189, 112], current state-of-the-art
methods [188, 329, 178, 44] have all incorporated graphical models into the deep learning
framework in some form. However, we observe that the CRFs that have been incorporated
into deep learning techniques are still rather rudimentary as they consist of only unary and
pairwise potentials [329]. In this paper, we show that CRFs with carefully designed higher
order potentials (potentials defined over cliques consisting of more than two nodes) can
also be modelled as CNN layers when using mean field inference [152]. The advantage
of performing CRF inference within a CNN is that it enables joint optimisation of CNN
classifier weights and CRF parameters during the end-to-end training of the complete
system. Intuitively, the classifier and the graphical model learn to optimally co-operate with
each other during the joint training.

We introduce two types of higher order potential into the CRF embedded in our deep
network: object-detection based potentials and superpixel-based potentials. The primary
idea of using object-detection potentials is to use the outputs of an off-the-shelf object
detector as additional semantic cues for finding the segmentation of an image. Intuitively, an
object detector with a high recall can help the semantic segmentation algorithm by finding
objects appearing in an image. As shown in Fig. 3.1, our method is able to recover from poor
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segmentation unaries when we have a confident detector response. However, our method is
robust to false positives identified by the object detector since CRF inference identifies and
rejects false detections that do not agree with other types of energies present in the CRF.

Superpixel-based higher order potentials encourage label consistency over superpixels
obtained by oversegmentation. This is motivated by the fact that regions defined by
superpixels are likely to contain pixels from the same visual object. Once again, our
formulation is robust to the violations of this assumption and errors in the initial superpixel
generation step. In practice, we noted that this potential is effective for getting rid of small
regions of spurious labels that are inconsistent with the correct labels of their neighbours.

We evaluate our higher order potentials on the PASCALVOC2012 semantic segmentation
benchmark as well as the PASCAL Context dataset, to show significant improvements over
our baseline and achieve state-of-the art results.

3.2 Related Work

Before deep learning became prominent, semantic segmentation was performed with
dense hand-crafted features which were fed into a per-pixel or region classifier [266]. The
individual predictions made by these classifiers were often noisy as they lacked global
context, and were thus post-processed with a CRF, making use of prior knowledge such as
the fact that nearby pixels, as well as pixels of similar appearance, are likely to share the
same class label [266].

The CRF model of [266] initially contained only unary and pairwise terms in an 8-
neighbourhood, which [148] showed can result in shrinkage bias. Numerous improvements
to this model were subsequently proposed including: densely connected pairwise potentials
facilitating interactions between all pairs of image pixels [154], formulating higher order
potentials defined over cliques larger than two nodes [148, 163] in order to capture more
context, modelling co-occurrence of object classes [162, 239, 103], and utilising the results of
object detectors [164, 318, 306].

Recent advances in deep learning have allowed us to replace hand-crafted features with
features learned specifically for semantic segmentation. The strength of these representations
was illustrated by [189] who achieved significant improvements over previous hand-
crafted methods without using any CRF post-processing. Chen et al. [44] showed further
improvements by post-processing the results of a CNN with a CRF. Subsequent works
[329, 178, 179, 188] have taken this idea further by incorporating a CRF as layers within
a deep network and then learning parameters of both the CRF and CNN together via
backpropagation.
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In terms of enhancements to conventional CRF models, Ladicky et al. [164] proposed
using an off-the-shelf object detector to provide additional cues for semantic segmentation.
Unlike other approaches that refine a bounding-box detection to produce a segmentation
[112, 317], this method used detector outputs as a soft constraint and can thus recover from
object detection errors. Their formulation, however, used graph-cut inference, which was
only tractable due to the absence of dense pairwise potentials. Object detectors have also
been used by [318, 275], who also modelled variables that describe the degree to which an
object hypothesis is accepted.

We formulate the detection potential in a different manner to [164, 275, 318] so that it
is amenable to mean field inference. Mean field permits inference with dense pairwise
connections, which results in substantial accuracy improvements [154, 44, 329]. Furthermore,
mean field updates related to our potentials are differentiable and its parameters can thus
be learned in our end-to-end trainable architecture.

We also note that while the semantic segmentation problem has mostly been formulated
in terms of pixels [266, 189, 329], some have expressed it in terms of superpixels [38, 83,
64]. Superpixels can capture more context than a single pixel and computational costs can
also be reduced if one considers pairwise interactions between superpixels rather than
individual pixels [318]. However, such superpixel representations assume that the segments
share boundaries with objects in an image, which is not always true. As a result, several
authors [163, 296] have employed higher order potentials defined over superpixels that
encourage label consistency over regions, but do not strictly enforce it. This approach also
allows multiple, non-hierarchical layers of superpixels to be integrated. Our formulation
uses this kind of higher order potential, but in an end-to-end trainable CNN.

Graphical models have been used with CNNs in other areas besides semantic segmen-
tation, such as in pose-estimation [282] and group activity recognition [72]. Alternatively,
Ionescu et al. [131] incorporated structure into a deep network with structured matrix
layers and matrix backpropagation. However, the nature of models used in these works is
substantially different to ours. Some early works that advocated gradient backpropagation
through graphical model inference for parameter optimisation include [73, 155] and [251].

Our work differentiates from the above works since, to our knowledge, we are the first
to propose and conduct a thorough experimental investigation of higher order potentials
that are based on detection outputs and superpixel segmentation in a CRF which is learned
end-to-end in a deep network. Note that although [296] formulated mean field inference
with higher order potentials, they did not consider object detection potentials at all, nor
were the parameters learned.
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3.3 Conditional Random Fields

We now review conditional random fields used in semantic segmentation and introduce
the notation used in the paper. Take an image I with N pixels, indexed 1, 2, . . . , N . In
semantic segmentation, we attempt to assign every pixel a label from a predefined set of
labels L = {l1, l2, . . . , lL}. Define a set of random variables X1, X2, . . . , XN , one for each
pixel, where each Xi ∈ L. LetX = [X1 X2 . . . XN ]T . Any particular assignment x toX is
thus a solution to the semantic segmentation problem.

We use notations {V}, and V(i) to represent the set of elements of a vector V, and
the ith element of V, respectively. A CRF models the conditional distribution, Pr(x|I) =

(1/Z(I)) exp(−E(x|I)), where E(x|I) is the energy of the assignment x and Z(I) is the
normalisation factor known as the partition function. We drop the conditioning on I

hereafter to keep the notation uncluttered. The energy, E(x), of an assignment is defined
using the set of cliques C defined in the CRF. More specifically, E(x) =

∑
c∈C ψc(xc), where

xc is a vector formed by selecting elements of x that correspond to random variables
belonging to the clique c, and ψc(.) is the cost function for the clique c. The function, ψc(.),
usually uses prior knowledge about a good segmentation, as well as information from the
image, the observation the CRF is conditioned on.

Minimising the energy yields the maximum a posteriori (MAP) labelling of the image
i.e. the most probable label assignment given the observation (image). When dense pairwise
potentials are used in the CRF to obtain higher accuracy, exact inference is impracticable,
and one has to resort to an approximate inference method such as mean field inference [154].
Mean field inference is particularly appealing in a deep learning setting since it is possible
to formulate it as a Recurrent Neural Network [329].

3.4 CRF with Higher Order Potentials

Many CRF models that have been incorporated into deep learning frameworks [44, 329]
have so far used only unary and pairwise potentials. However, potentials defined on higher
order cliques have been shown to be useful in previous works such as [148, 296]. The key
contribution of this paper is to show that a number of explicit higher order potentials can
be added to CRFs to improve image segmentation, while staying compatible with deep
learning. We formulate these higher order potentials in a manner that mean field inference
can still be used to solve the CRF. Advantages of mean field inference are twofold: First,
it enables efficient inference when using densely-connected pairwise potentials. Multiple
works, [155, 329] have shown that dense pairwise connections result in substantial accuracy
improvements, particularly at image boundaries [44, 154]. Secondly, we keep all our mean
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(a) (b) (c) (d) (e) (f)

Figure 3.2: Utility of object detections as another cue for semantic segmentation. For every
pair, segmentation on the left was produced with only unary and pairwise potentials.
Detection based potentials were added to produce the result on the right. Note how we are
able to improve our segmentations for the bus, table and bird over their respective baselines.
Furthermore, our system is able to reject erroneous detections such as the person in (b)
and the bottle and chair in (d). Images were taken from the PASCAL VOC 2012 reduced
validation set. Baseline results were produced using the public code and model of [329].

field updates differentiable with respect to their inputs as well as the CRF parameters
introduced. This design enables us to use backpropagation to automatically learn all the
parameters in the introduced potentials.

We use two types of higher order potential, one based on object detections and the
other based on superpixels. These are detailed in Sections 3.4.1 and 3.4.2 respectively. Our
complete CRF model is represented by

E(x) =
∑
i

ψUi (xi) +
∑
i< j

ψPij(xi, xj) +
∑
d

ψDet
d (xd) +

∑
s

ψSP
s (xs), (3.1)

where the first two terms ψUi (.) and ψPij(., .) are the usual unary and densely-connected
pairwise energies [154] and the last two terms are the newly introduced higher order
energies. Energies from the object detection take the form ψDet

d (xd), where vector xd is
formed by elements of x that correspond to the foreground pixels of the dth object detection.
Superpixel label consistency based energies take the form ψSP

s (xs), where xs is formed by
elements of x that correspond to the pixels belonging to the sth superpixel.

3.4.1 Object Detection Based Potentials

Semantic segmentation errors can be classified into two broad categories [63]: recognition
and boundary errors. Boundary errors occur when semantic labels are incorrect at the edges
of objects, and it has been shown that densely connected CRFs with appearance-consistency
terms are effective at combating this problem [154]. On the other hand, recognition errors
occur when object categories are recognised incorrectly or not at all. A CRF with only unary
and pairwise potentials cannot effectively correct these errors since they are caused by poor
unary classification. However, we propose that a state-of-the-art object detector [98, 243]

34



3.4. CRF with Higher Order Potentials

capable of recognising and localising objects, can provide important information in this
situation and help reduce the recognition error, as shown in Fig. 3.2.

A key challenge in feeding-in object-detection potentials to semantic segmentation are
false detections. A naïve approach of adding an object detector’s output to a CRF formulated
to solve the problem of semantic segmentation would confuse the CRF due to the presence
of the false positives in the detector’s output. Therefore, a robust formulation, which can
automatically reject object detection false positives when they do not agree with other types
of potentials in the CRF, is desired. Furthermore, since we are aiming for an end-to-end
trainable CRFwhich can be incorporated into a deep neural network, the energy formulation
should permit a fully differentiable inference procedure. We now propose a formulation
which has both of these desired properties.

Assume that we haveD object detections for a given image, and that the dth detection is of
the form (ld, sd, Fd), where ld ∈ L is the class label of the detected object, sd is the confidence
score of the detection, and Fd ⊆ {1, 2, . . . , N}, is the set of indices of the pixels belonging to
the foreground of the detection. The foreground within a detection bounding box could
be obtained using a foreground/background segmentation method (i.e. GrabCut [252]),
and represents a crude segmentation of the detected object. Using our detection potentials,
we aim to encourage the set of pixels represented by Fd, to take the label ld. However, this
should not be a hard constraint since the foreground segmentation could be inaccurate and
the detection itself could be a false detection. We therefore seek a soft constraint that assigns
a penalty if a pixel in Fd takes a label other than ld. Moreover, if other energies used in the
CRF strongly suggest that many pixels in Fd do not belong to the class ld, the detection d
should be identified as invalid.

An approach to accomplish this is described in [164] and [318]. However, in both cases,
dense pairwise connections were absent and different inference methods were used. In
contrast, we would like to use the mean field approximation to enable efficient inference
with dense pairwise connections [154], and also because its inference procedure is fully
differentiable. We therefore use a detection potential formulation quite different to the ones
used in [164] and [318].

In our formulation, as done in [164] and [318], we first introduce latent binary random
variables Y1, Y2, . . . YD, one for each detection. The interpretation for the random variable
Yd that corresponds to the dth detection is as follows: If the dth detection has been found
to be valid after inference, Yd will be set to 1, it will be 0 otherwise. Mean field inference
probabilistically decides the final value of Yd. Note that, through this formulation, we can
account for the fact that the initial detection could have been a false positive: some of the
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detections obtained from the object detector may be identified to be false following CRF
inference.

All Yd variables are added to the CRF which previously contained onlyXi variables. Let
each (Xd, Yd), where {Xd} = {Xi ∈ {X}|i ∈ Fd}, form a clique cd in the CRF. We define the
detection-based higher order energy associated with a particular assignment (xd, yd) to the
clique (Xd, Yd) as follows:

ψDet
d (xd, yd) =


wDet

sd
nd

∑nd
i=1[x

(i)
d = ld] if yd = 0,

wDet
sd
nd

∑nd
i=1[x

(i)
d 6= ld] if yd = 1,

(3.2)

where nd = |Fd| is the number of foreground pixels in the dth detection, x(i)
d is the ith element

of the vector xd, wDet is a learnable weight parameter, and [ . ] is the Iverson bracket. Note
that this potential encourages X(i)

d s to take the value ld when Yd is 1, and at the same time
encourages Yd to be 0 when many X(i)

d s do not take ld. In other words, it enforces the
consistency among X(i)

d s and Yd.
An important property of the above definition of ψDet

d (.) is that it can be simplified as a
sum of pairwise potentials between Yd and each X(i)

d for i = 1, 2, . . . , nd. That is,

ψDet
d (xd, yd) =

nd∑
i=1

fd(x
(i)
d , yd), where,

fd(x
(i)
d , yd) =

wDet
sd
nd

[x
(i)
d = ld] if yd = 0,

wDet
sd
nd

[x
(i)
d 6= ld] if yd = 1.

(3.3)

We make use of this simplification in Section 3.5 when deriving the mean field updates
associated with this potential.

For the latent Y variables, in addition to the joint potentials with X variables, described
in Eq. (3.2) and (3.3), we also include unary potentials, which are initialised from the score
sd of the object detection. The underlying idea is that if the object detector detects an
object with high confidence, the CRF in turn starts with a high initial confidence about the
validity of that detection. This confidence can, of course, change during the CRF inference
depending on other information (e.g. segmentation unary potentials) available to the CRF.

Examples of input images with multiple detections and GrabCut foreground masks
are shown in Figure 3.3. Note how false detections are ignored and erroneous parts of the
foreground mask are also largely ignored.

3.4.2 Superpixel Based Potentials

The next type of higher order potential we use is based on the idea that superpixels obtained
from oversegmentation [89, 1] quite often contain pixels from the same visual object. It is
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(a) (b) (c) (d)

Figure 3.3: Effects of imperfect foreground segmentation. (a,b) Detected objects, as well
as the foreground masks obtained from GrabCut. (c,d) Output using detection potentials.
Incorrect parts of the foreground segmentation of the main aeroplane, and entire TV
detection have been ignored by CRF inference as they did not agree with the other energy
terms. The person is a failure case though as the detection has caused part of the sofa to be
erroneously labelled.

(a) (b) (c)

Figure 3.4: Segmentation enhancement from superpixel based potentials. (a) The output
of our system without any superpixel potentials. (b) Superpixels obtained from the image
using the method of [89]. Only one “layer" of superpixels is shown. In practice, we used
four. (c) The output using superpixel potentials. The result has improved as we encourage
consistency over superpixel regions. This removes some of the spurious noise that was
present previously.

therefore natural to encourage pixels inside a superpixel to have the same semantic label.
Once again, this should not be a hard constraint in order to keep the algorithm robust to
initial superpixel segmentation errors and to violations of this key assumption.

We use two types of energies in the CRF to encourage superpixel consistency in semantic
segmentation. Firstly, we use the Pn-Potts model type energy [147], which is described by,

ψSP
s (xs) =

wLow(l) if all x(i)
s = l,

wHigh otherwise,
(3.4)

where wLow(l) < wHigh for all l, and xs are the elements of x that correspond to a superpixel.
The primary idea is that assigning different labels to pixels in the same superpixel incurs a
higher cost, whereas one obtains a lower cost if the labelling is consistent throughout the
superpixel. Costs wLow(l) and wHigh are learnable during the end-to-end training of the
network.
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Secondly, to make this potential stronger, we average initial unary potentials from the
classifier (the CNN in our case), across all pixels in the superpixel and use the average
as an additional unary potential for those pixels. During experiments, we observed that
superpixel based higher order energy helps in getting rid of small spurious regions of wrong
labels in the segmentation output, as shown in Fig. 3.4.

3.5 Mean Field Updates and Their Differentials

This section discusses the mean field updates for the higher order potentials previously
introduced. Theseupdate operations aredifferentiablewith respect to theQi(Xi)distribution
inputs at each iteration, as well as the parameters of our higher order potentials. This allows
us to train our CRF end-to-end as another layer of a neural network.

Take a CRF with random variables V1, V2, . . . , VN and a set of cliques C, which includes
unary, pairwise and higher order cliques. Mean field inference approximates the joint
distribution Pr(V = v) with the product of marginals

∏
iQ(Vi = vi). We use Q(Vc = vc)

to denote the marginal probability mass for a subset {Vc} of these variables. Where there
is no ambiguity, we use the short-hand notation Q(vc) to represent Q(Vc = vc). General
mean field updates of such a CRF take the form [113, 152]

Qt+1(Vi = v) =
1

Zi
exp

−∑
c∈C

∑
{vc|vi=v}

Qt(vc−i)ψc(vc)

, (3.5)

where Qt is the marginal after the tth iteration, vc an assignment to all variables in clique c,
vc−i an assignment to all variables in c except for Vi, ψc(vc) is the cost of assigning vc to
the clique c, and Zi is the normalisation constant that makes Q(Vi = v) a probability mass
function after the update.

3.5.1 Updates from Detection Based Potentials

Following Eq. (3.3) above, we now use Eq. (3.5) to derive the mean field updates related to
ψDet
d . The contribution from ψDet

d to the update of Q(X
(i)
d = l) takes the form

∑
{(xd,yd)|x(i)d =l}

Q(xd−i, yd)ψ
Det
d (xd, yd) =


wDet

sd
nd
Q(Yd = 0) if l = ld,

wDet
sd
nd
Q(Yd = 1) otherwise,

(3.6)

where xd−i is an assignment to Xd with the ith element deleted. Using the same equations,
we derive the contribution from the energy ψDet

d to the update of Q(Yd = b) to take the
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3.5. Mean Field Updates and Their Differentials

form

∑
{(xd,yd)|yd=b}

Q(xd)ψ
Det
d (xd, yd) =


wDet

sd
nd

∑nd
i=1Q(X

(i)
d = ld) if b = 0,

wDet
sd
nd

∑nd
i=1(1−Q(X

(i)
d = ld)) otherwise.

(3.7)

It is possible to increase the number of parameters in ψDet
d (.). Since we use backpropaga-

tion to learn these parameters automatically during end-to-end training, it is desirable to
have a high number of parameters to increase the flexibility of the model. Following this
idea, we made the weight wDet class specific, that is, a function wDet(ld) is used instead of
wDet in Eqs. (3.2), (3.6) and (3.7). The underlying assumption is that detector outputs can
be very helpful for certain classes, while being not so useful for classes that the detector
performs poorly on, or classes for which the foreground segmentation is often inaccurate.

Note that due to the presence of detection potentials in the CRF, error differentials
calculated with respect to the X variable unary potentials and pairwise parameters will no
longer be valid in the forms described in [329]. The error differentials with respect to the X
and Y variables, as well as class-specific detection potential weights wDet(l) are included in
the supplementary material.

3.5.2 Updates for Superpixel Based Potentials

The contribution from the Pn-Potts type potential to the mean field update of Q(xi = l),
where pixel i is in the superpixel clique s, was derived in [296] as

∑
{xs|x(i)s =l}

Q(xs−i) ψ
SP
s (xs) = wLow(l)

∏
j∈c,j 6=i

Q(Xj = l) + wHigh

1−
∏
j∈c−i

Q(Xj = l)

. (3.8)

This update operation is differentiable with respect to the parameters wLow(l) and wHigh,
allowing us to optimise them via backpropagation, and also with respect to theQ(X) values
enabling us to optimise previous layers in the network.

3.5.3 Convergence of parallel mean field updates

Mean field with parallel updates, as proposed in [154] for speed, does not have any
convergence guarantees in the general case. However, we usually empirically observed
convergence with higher order potentials, without damping the mean field update as
described in [296, 17]. This may be explained by the fact that the unaries from the initial
pixelwise-prediction part of our network provide a good initialisation. In cases where the
mean field energy did not converge, we still empirically observed good final segmentations.
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3. Higher Order Conditional Random Fields in Deep Neural Networks

3.6 Experiments

We evaluate our newCRF formulation on two different datasets using the CRF-RNNnetwork
[329] as the main baseline, since we are essentially enriching the CRF model of [329]. We
then present ablation studies on our models.

3.6.1 Experimental set-up and results

Our deep network consists of two conceptually different, but jointly trained stages. The first,
“unary” part of our network is formed by the FCN-8s architecture [189]. It is initialised from
the Imagenet-trained VGG-16 network [267], and then fine-tuned with data from the VOC
2012 training set [81], extra VOC annotations of [110] and the MS COCO [180] dataset.

The output of the first stage is fed into our CRF inference network. This is implemented
using the mean field update operations and their differentials described in Section 3.5.
Five iterations of mean field inference were performed during training. Our CRF network
has two additional inputs in addition to segmentation unaries obtained from the FCN-8s
network: data from the object detector and superpixel oversegmentations of the image.

We used the publicly available code and model of the Faster R-CNN [243] object detector.
The fully automated version of GrabCut [252] was then used to obtain foregrounds from
the detection bounding boxes. These choices were made after conducting preliminary
experiments with alternate detection and foreground segmentation algorithms.

Four levels of superpixel oversegmentations were used, with increasing superpixel size
to define the cliques used in this potential. Four levels were used since performance on the
VOC validation set stopped increasing after this number. We used the superpixel method of
[89] as it was shown to adhere to object boundaries the best [1], but our method generalises
to any oversegmentation algorithm.

We trained the full network end-to-end, optimising the weights of the CNN classifier
(FCN-8s) and CRF parameters jointly. We initialised our network using the publicly available
weights of [329], and trained with a learning rate of 10−10 and momentum of 0.99. The
learning rate is low because the loss was not normalised by the number of pixels in the
training image. This is to have a larger loss for images with more pixels. When training our
CRF, we only used VOC 2012 data [81] as it has the most accurate labelling, particularly
around boundaries.

3.6.1.1 PASCAL VOC 2012 Dataset

The improvement obtained by each higher order potential was evaluated on the same
reduced validation set [189] used by our baseline [329]. As Table 3.1 shows, each new higher
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3.6. Experiments

Table 3.1: Comparison of each higher order
potential with respect to our baseline on the
VOC 2012 reduced validation set.

Method Reduced
val set(%)

Baseline (unary + pairwise)[329] 72.9
Superpixels only 74.0
Detections only 74.9
Detections and Superpixels 75.8

Table 3.2: Mean IoU accuracy on VOC 2012
test set. All methods are trained with MS
COCO [180] data

Method Test set(%)

Ours 77.9
DPN[188] 77.5
Centrale Super Boundaries[149] 75.7
Dilated Convolutions[319] 75.3
BoxSup[63] 75.2
DeepLab Attention[47] 75.1
CRF-RNN (baseline) [329] 74.7
DeepLab WSSL[221] 73.9
DeepLab[44] 72.7

Table 3.3: Mean Intersection over Union (IoU) results on PASCAL Context validation set
compared to other current methods.

Method Ours BoxSup[63] ParseNet[186] CRF-RNN [329] FCN-8s[189] CFM[64]

Mean IoU (%) 41.3 40.5 40.4 39.3 37.8 34.4

order potential improves the mean IoU over the baseline. We only report test set results for
our best method since the VOC guidelines discourage the use of the test set for ablation
studies. On the test set (Table 3.2), we outperform our baseline by 3.2% which equates to
a 12.6% reduction in the error rate. This sets a new state-of-the-art on the VOC dataset.
Qualitative results highlighting success and failure cases of our algorithm, as well as more
detailed results, are shown in our supplementary material.

3.6.1.2 PASCAL Context

Table 3.3 shows our state-of-the-art results on the recently released PASCAL Context dataset
[209]. We trained on the provided training set of 4998 images, and evaluated on the
validation set of 5105 images. This dataset augments VOC with annotations for all objects in
the scene. As a result, there are 59 classes as opposed to the 20 in the VOC dataset. Many
of these new labels are “stuff” classes such as “grass” and “sky”. Our object detectors are
therefore only trained for 20 of the 59 labels in this dataset. Nevertheless, we improve by
0.8% over the previous state-of-the-art [63] and 2% over our baseline [329].

3.6.2 Ablation Studies

We perform additional experiments to determine the errors made by our system, show
the benefits of end-to-end training and compare our detection potentials to a simpler
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Figure 3.5: Error analysis on VOC 2012 reduced validation set. The IoU is computed for
boundary and interior regions for various trimap widths. An example of the Boundary and
Interior regions for a sample image using a width of 9 pixels is shown in white in the top
row. Black regions are ignored in the IoU calculation.

baseline. Unless otherwise stated, these experiments are performed on the VOC 2012
reduced validation set.

3.6.2.1 Error Analysis

To analyse the improvements made by our higher order potentials, we separately evaluate
the performance on the “boundary” and “interior” regions in a similar manner to [63]. As
shown in Fig. 3.5 c) and d), we consider a narrow band (trimap [148]) around the “void”
labels annotated in the VOC 2012 reduced validation set. The mean IoU of pixels lying
within this band is termed the “Boundary IoU” whilst the “Interior IoU” is evaluated
outside this region.

Figure 3.5 shows our results as the trimap width is varied. Adding the detection
potentials improves the Interior IoU over our baseline (only pairwise potentials [329]) as the
object detector may recognise objects in the image which the pixelwise classification stage
of our network may have missed out. However, the detection potentials also improve the
Boundary IoU for all tested trimap widths as well. Improving the recognition of pixels in
the interior of an object also helps with delineating the boundaries since the strength of the
pairwise potentials exerted by the Q distributions at each of the correctly-detected pixels
increase.

Our superpixel priors also increase the Interior IoU with respect to the baseline.
Encouraging consistency over regions helps to get rid of spurious regions of wrong labels
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3.6. Experiments

Table 3.4: Comparison of mean IoU (%) obtained on VOC 2012 reduced validation set from
end-to-end and piecewise training.

Method FCN-8s DCN

Unary only, fine-tuned on COCO 68.3 68.6
Pairwise CRF trained piecewise 69.5 70.7
Pairwise CRF trained end-to-end 72.9 72.5
Higher Order CRF trained piecewise 73.6 73.5
Higher Order CRF trained end-to-end 75.8 75.0

Test set performance of best model 77.9 76.9

(as shown in Fig. 3.4). Fig. 3.5 suggests that most of this improvement occurs in the interior
of an object. The Boundary IoU is slightly lower than the baseline, and this may be due
to the fact that superpixels do not always align correctly with the edges of an object (the
“boundary recall” of various superpixel methods are evaluated in [1]).

We can see that the combination of detection and superpixel potentials results in a
substantial improvement in our Interior IoU. This is the primary reason our overall IoU on
the VOC benchmark increases with higher order potentials.

3.6.2.2 Benefits of end-to-end training

Table 3.4 shows how end-to-end training outperforms piecewise training. We trained the
CRF piecewise by freezing the weights of the unary part of the network, and only learning
the CRF parameters.

Our results in Table 3.2 used the FCN-8s [189] architecture to generate unaries. To show
that our higher order potentials improve performance regardless of the underlying CNN
used for producing unaries, we also perform an experiment using our reimplementation
of the “front-end” module proposed in the Dilated Convolution Network (DCN) of [319]
instead of FCN-8s.

Table 3.4 shows that end-to-end training of the CRF yields considerable improvements
over piecewise training. This was the case when using either FCN-8s or DCN for obtaining
the initial unaries before performing CRF inference with higher order potentials. This
suggests that our CRF network module can be plugged into different architectures and
achieve performance improvements.

3.6.2.3 Baseline for detections

To evaluate the efficacy of our detection potentials, we formulate a simpler baseline since no
other methods use detection information at inference time (BoxSup [63] derives ground
truth for training using ground-truth bounding boxes).
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3. Higher Order Conditional Random Fields in Deep Neural Networks

Our baseline is similar to CRF-RNN [329], but prior to CRF inference, we take the
segmentation mask from the object detection and add a unary potential proportional to the
detector’s confidence to the unary potentials for those pixels. We then perform mean-field
inference (with only pairwise terms) on these “augmented” unaries. Using this method, the
mean IoU increases from 72.9% to 73.6%, which is significantly less than the 74.9% which
we obtained using only our detection potentials without superpixels (Table 3.1).

Our detection potentials perform better since our latent Y detection variables model
whether the detection hypothesis is accepted or not. Our CRF inference is able to evaluate
object detection inputs in light of other potentials. Inference increases the relative score
of detections which agree with the segmentation, and decreases the score of detections
which do not agree with other energies in the CRF. Figures 3.2 b) and d) show examples
of false-positive detections that have been ignored and correct detections that have been
used to refine our segmentation. Our baseline, on the other hand, is far more sensitive to
erroneous detections as it cannot adjust the weight given to them during inference.

3.7 Conclusion

We presented a CRF model with two different higher order potentials to tackle the semantic
segmentation problem. The first potential is based on the intuitive idea that object
detection can provide useful cues for semantic segmentation. Our formulation is capable
of automatically rejecting false object detections that do not agree at all with the semantic
segmentation. Secondly, we used a potential that encourages superpixels to have consistent
labelling. These two newpotentials can co-exist with the usual unary and pairwise potentials
in a CRF.

Importantly, we showed that efficient mean field inference is still possible in the presence
of the new higher order potentials and derived the explicit forms of the mean field updates
and their differentials. This enabled us to implement the new CRF model as a stack of
CNN layers and to train it end-to-end in a unified deep network with a pixelwise CNN
classifier. We experimentally showed that the addition of higher order potentials results in a
significant increase in semantic segmentation accuracy allowing us to reach state-of-the-art
performance.
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3.A. Derivatives of Mean Field Updates

Appendices

3.A Derivatives of Mean Field Updates

The pseudocode for the mean field inference algorithm with latent Y detection variables is
shown below in Algorithm 1. We use the same notation used in the main paper.

Algorithm 1Mean Field Inference
Q0(Xi = l)← 1

Zi
exp

(
−ψU

i (l)
)
, ∀i, l

Q0(Yd = b)← sbd(1− sd)(1−b), ∀d, b
. Initialisation

for t = 0 : T − 1 do
Et(Xi = l)← UnaryUpdate + PairwiseUpdate +

DetectionUpdate + SuperpixelUpdate, ∀i, l
Et(Yd = b)← Y_UnaryUpdate + Y_DetectionUpdate

.Mean field updates
Qt+1(Xi = l)← 1

Zi
exp (−Et(Xi = l)), ∀i, l

Qt+1(Yd = b)← 1
Zd

exp (−Et(Yd = b)), ∀d, b
. Normalising

end for

For the explicit forms of the UnaryUpdate and PairwiseUpdate above, and their
differentials, we refer the reader to [329] and discuss the terms DetectionUpdate and
SuperpixelUpdate in detail below.

Let us assume that only one object detection of the form (ld, sd, Fd) is available for the
image under consideration. When multiple detections are present, simply a summation of
the updates and differentials discussed below apply. Therefore, no generality is lost with
this assumption. Similarly, we can assume that only one superpixel clique {Xs} is present,
without a loss of generality.

Assuming that pixel i in Algorithm 1 belongs to Fd, Eq. (3.6) in the main paper described
the exact form of DetectionUpdate. Similarly, assuming that pixel i belongs to {Xs} Eq. (3.8)
described the form of SuperpixelUpdate.

Let L denote the value of the loss function calculated at the output of the deep
network. This could be the softmax loss or any other appropriate loss function. During
backpropagation, we get the error signal ∂L

∂QT at the output of themean field inference. Using
this error information, we need to compute the derivative of the loss Lwith respect to theX
unaries and various CRF parameters. Note that, if we compute the relevent differentials for
only one iteration of the mean field algorithm, it is possible to calculate them for multiple
iterations using the recurrent behaviour of the iterations.

Note that, by looking at Normalising step of Algorithm 1, it is trivial to calculate ∂Qt+1

∂Et .
Therefore, we can then calculate ∂L

∂Et using the chain rule. This is same as backpropagation
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3. Higher Order Conditional Random Fields in Deep Neural Networks

of the usual softmax operation in a deep network (up to a negative sign). Using this
observation we can calculate the necessary differentials to take the forms shown below:

∂L

∂wDet
=
sd
nd

nd∑
i=1

( ∂L

Et(X
(i)
d = ld)

Qt(Yd = 1) + (3.9)

∑
l′ 6=ld

∂L

∂Et(X
(i)
d = l′)

Qt(Yd = 1)
)

+

∂L

∂Et(Yd = 0)

sd
nd

nd∑
i=1

Qt(X
(i)
d = ld) +

∂L

∂Et(Yd = 1)

sd
nd

nd∑
i=1

(
1−Qt(X(i)

d = ld)
)

∂L

∂Qt(X
(i)
d = ld)

= wDet
∂L

∂Et(Yd = 0)
− wDet

∂L

∂Et(Yd = 1)
(3.10)

∂L

∂Qt(Yd = 0)
= wDet

sd
nd

nd∑
i=1

(
∂L

Et(X
(i)
d = ld)

)
(3.11)

∂L

∂Qt(Yd = 1)
= wDet

sd
nd

nd∑
i=1

∑
l 6=ld

(
∂L

∂Et(X
(i)
d = l′)

)
(3.12)

∂L

∂wLow(l)
=
∑
i∈s

 ∂L

∂Et(X
(i)
s = l)

∏
j∈c,j 6=i

Qt(Xj = l)

 (3.13)

∂L

∂wHigh
=
∑
i∈s

∑
l∈L

 ∂L

∂Et(X
(i)
s = l)

1−
∏

j∈c,j 6=i
Qt(Xj = l)

 (3.14)

Effect of the superpixel potentials on the derivatives ∂L
∂Qt(Xi=l)

were negligible. Therefore,
we ignored them in our calculations.

3.B Additional Experimental Results

Evaluation of the rescoring of detections

As mentioned in Sec. 3.4.1, the unary potentials of the latent Y detection variables in our
CRF are obtained from the confidence score of the object detector, and are then updated
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Table 3.5: Comparison between the adjust detection scores as a result of CRF inference and
original detection scores

Faster RCNN Faster RCNN with rescored
confidences

Mean Average Precision (%) 64.3 64.6

during mean-field inference. We view the final value of the Y variables after inference as
the rescored or calibrated confidence value of the object detector.

We performed semantic segmentation on the images in the test set of the Pascal VOC
2012 detection challenge using initial bounding boxes from Faster R-CNN [243]. Although
our network does not change the bounding box predictions of the detector, it does adjust
the confidence scores. As shown in Tab. 3.5, we observe a slight improvement of 0.3% in the
mean average precision when using our recalibrated scores.

This suggests that our CRF inference is able to evaluate object detection inputs in light
of other potentials (unary, pairwise, and superpixels). Inference increases the relative score
of detections which agree with the segmentation, and decreases the score of detections that
do not agree with other energies in the CRF. Figures 3.2b) and d) show examples of false
positive detection that have been ignored and correct detections that have been used to
refine our segmentation.

Note that we used the publicly available version (code and model) of Faster R-CNN. We
applied non-maximal suppression and thresholded the detections such that detections with
a score lower than 0.6 (out of 1) were not used for CRF inference.

Additional quantitative results

Table 3.6 presents more detailed results of our method, and that of other state-of-the-art
techniques, on the PASCAL VOC 2012 test set. In particular, we present the accuracy for
every class in the VOC test set. Note that our per-class accuracy improves over our baseline,
CRF-RNN [329], for all of the 20 classes in PASCAL VOC.

Additional qualitative results

Figure 3.6 shows more sample results of our system, compared to our baseline, CRF-as-RNN
[329]. Figure 3.7 shows examples of failure cases of our method. Figure 3.8 examines the
effect of each of our potentials. Finally, Figure 3.9 shows a qualitative comparison between
the output of our system and other current methods on the PASCAL VOC 2012 test set.
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3.B. Additional Experimental Results

Input image CRF-as-RNN [329] Our method Ground truth

Figure 3.6: Examples of images where our method has improved over our baseline, CRF-as-
RNN [329]. The input images have the detection bounding boxes overlaid on them. Note
that the method of [329] does not make use of this information. The improvements from
our method are due to our detection potentials, as well as our superpixel based potentials.
Note that all images are from the reduced validation set of VOC 2012 and have not been
trained on at all.
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3. Higher Order Conditional Random Fields in Deep Neural Networks

Input image CRF-as-RNN [329] Our method Ground truth

Figure 3.7: Examples of failure cases where our method has performed poorly. The first
row shows an example of how the detection of the person has now resulted in the sofa
being misclassified (although our system is able to reject the other false detection). Our
superpixel potentials have a tendency to remove spurious noise by enforcing consistency
within regions. However, as shown in the second row, sometimes the “noise" being removed
is actually the correct label. In the other cases, we are limited by our pixelwise classification
unaries which are poor. Our superpixel and detection potentials are not always able to
compensate for this. Note that all images are from the reduced validation set of VOC 2012
and have not been trained on at all. The input images have the detection bounding boxes
overlaid on them. Note that the method of [329] does not make use of this information.
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3.B. Additional Experimental Results

Input image Pairwise only Superpixels
only

Detections
only

Detections
and

Superpixels
Ground truth

Figure 3.8: Comparison of pairwise potentials, superpixel and pairwise potentials, detection
and pairwise potentials, and a combination of all three. (Row 1 and 2) These are examples
where superpixel potentials help to remove spurious noise in the output but detection
potentials do not affect the result. The final result still improves when all potentials are
combined. (Row 3) Detection potentials greatly improve the result by recognising the train
correctly (the pixelwise unaries are largest for “bus”). And superpixels, when combined
with detections, slightly improve the output. (Row 4) An example where both superpixel
and detection potentials improve the final output. (Row 5) A case where the superpixel
worsens the result as, although the output is more consistent among superpixel regions,
some pixels have had their correct labels removed. However, the correct detection improves
the result, and the output of combining superpixel and detection potentials is actually better
than either potential in isolation. (Row 6) Here, the detection (although correct) worsens
the output due to its imprecise foreground mask. Superpixel potentials also exacerbate the
result, since the legs of the chair and the chair’s shadow are confused to be part of the same
superpixel region. However, when the two potentials are combined, the result is slightly
better than with only detection potentials.
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3. Higher Order Conditional Random Fields in Deep Neural Networks

Input image FCN-8s [189] Deeplab [44] CRF-as-RNN [329] Our method Ground truth

Figure 3.9: Qualitative comparison with other current methods. Sample results of our
method compared to other current techniques on VOC 2012. We reproduced the segmenta-
tion results of Deeplab from their original publication, whilst we reproduced the results of
FCN-8s and CRF-as-RNN from their publicly-available source code.
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3.B. Additional Experimental Results

For completeness, we show a comparison of all the potentials described in our main paper
(pairwise, superpixels and detections), for all the images shown in Figures 3.6 and 3.7.

Input image Pairwise only Superpixels
only

Detections
only

Detections
and

Superpixels
Ground truth

Figure 3.10: Comparison of all potentials on images shown in Figures 3.6 and 3.7
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Input image Pairwise only Superpixels
only

Detections
only

Detections
and

Superpixels
Ground truth

Fig. 3.10 continued: Comparison of all potentials on images shown in Figures 3.6 and 3.7
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Chapter 4

Pixelwise Instance Segmentation with
a Dynamically Instantiated Network

Semantic segmentation and object detection research have recently achieved rapid progress.
However, the former task has no notion of different instances of the same object, and the latter
operates at a coarse, bounding-box level. We propose an Instance Segmentation system
that produces a segmentation map where each pixel is assigned an object class and instance
identity label. Most approaches adapt object detectors to produce segments instead of boxes.
In contrast, our method is based on an initial semantic segmentation module, which feeds
into an instance subnetwork. This subnetwork uses the initial category-level segmentation,
along with cues from the output of an object detector, within an end-to-end CRF to predict
instances. This part of our model is dynamically instantiated to produce a variable number
of instances per image. Our end-to-end approach requires no post-processing and considers
the image holistically, instead of processing independent proposals. Therefore, unlike some
related work, a pixel cannot belong to multiple instances. Furthermore, far more precise
segmentations are achieved, as shown by our substantial improvements at high AP r

thresholds.

4.1 Introduction

Semantic segmentation and object detection are well-studied scene understanding problems,
and have recently witnessed great progress due to deep learning [117, 66, 43]. However,
semantic segmentation – which labels every pixel in an image with its object class – has no
notion of different instances of an object (Fig. 4.1). Object detection does localise different
object instances, but does so at a very coarse, bounding-box level. Instance segmentation
localises objects at a pixel level, as shown in Fig. 4.1, and can be thought of being at
the intersection of these two scene understanding tasks. Unlike the former, it knows
about different instances of the same object, and unlike the latter, it operates at a pixel
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

(a) Object Detection (b) Semantic Segmentation (c) Instance Segmentation

Figure 4.1: Object detection (a) localises the different people, but at a coarse, bounding-box
level. Semantic segmentation (b) labels every pixel, but has no notion of instances. Instance
segmentation (c) labels each pixel of each person uniquely. Our proposed method jointly
produces both semantic and instance segmentations. Our method uses the output of an
object detector as a cue to identify instances, but is robust to false positive detections, poor
bounding box localisation and occlusions. Best viewed in colour.

level. Accurate recognition and localisation of objects enables many applications, such as
autonomous driving [57], image-editing [312] and robotics [108].

Many recent approaches to instance segmentation are based on object detection pipelines
where objects are first localised with bounding boxes. Thereafter, each bounding box is
refined into a segmentation [112, 111, 174, 184, 169]. Another related approach [65, 321] is to
use segment-based region proposals [62, 232, 233] instead of box-based proposals. However,
these methods do not consider the entire image, but rather independent proposals. As a
result, occlusions between different objects are not handled. Furthermore, many of these
methods cannot easily produce segmentation maps of the image, as shown in Fig. 4.1, since
they process numerous proposals independently. There are typically far more proposals
than actual objects in the image, and these proposals can overlap and be assigned different
class labels. Finally, as these methods are based on an initial detection step, they cannot
recover from false detections.

Our proposedmethod is inspired by the fact that instance segmentation can be viewed as
a more complex form of semantic segmentation, since we are not only required to label the
object class of each pixel, but also its instance identity. We produce a pixelwise segmentation
of the image, where each pixel is assigned both a semantic class and instance label. Our
end-to-end trained network, which outputs a variable number of instances per input image,
begins with an initial semantic segmentation module. The following, dynamic part of the
network, then uses information from an object detector and a Conditional Random Field
(CRF) model to distinguish different instances. This approach is robust to false-positive
detections, as well as poorly localised bounding boxes which do not cover the entire object, in
contrast to detection-based methods to instance segmentation. Moreover, as it considers the
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entire image when making predictions, it attempts to resolve occlusions between different
objects and can produce segmentation maps as in Fig. 4.1 without any post-processing.

Furthermore, we note that the Average Precision (AP) metric [81] used in evaluating
object detection systems, and itsAP r variant [112] used for instance segmentation, considers
individual, potentially overlapping, object predictions in isolation, as opposed to the entire
image. To evaluate methods such as ours, which produce complete segmentation maps
and reason about occlusions, we also evaluate using the “Matching Intersection over Union”
metric.

Our system, which is based on an initial semantic segmentation subnetwork, produces
sharp and accurate instance segmentations. This is reflected by the substantial improvements
we achieve over state-of-the-art methods at high AP r thresholds on the Pascal VOC and
Semantic Boundaries datasets. Furthermore, our network improves on the semantic
segmentation task while being trained for the related task of instance segmentation.

4.2 Related Work

An early work on instance segmentation was by Winn and Shotton [305]. A per-pixel unary
classifier was trained to predict parts of an object. These parts were then encouraged to
maintain a spatial ordering, that is characteristic of an instance, using asymmetric pairwise
potentials in a Conditional Random Field (CRF). Subsequent work [317], presented another
approach where detection outputs of DPM [88], with associated foreground masks, were
assigned a depth ordering using a generative, probabilistic model. This depth ordering
resolved occlusions.

However, instance segmentation has become more common after the “Simultaneous
Detection and Segmentation” (SDS) work of Hariharan et al. [112]. This system was
based on the R-CNN pipeline [100]: Region proposals, generated by the method of [5],
were classified into object categories with a Convolutional Neural Network (CNN) before
applying bounding-box regression as post-processing. A class-specific segmentation was
then performed in this bounding box to simultaneously detect and segment the object.
Numerous works [111, 50, 169] have extended this pipeline. However, approaches that
segment instances by refining detections [112, 111, 50, 64, 169] are inherently limited by
the quality of the initial proposals. This problem is exacerbated by the fact that this
pipeline consists of several different modules trained with different objective functions.
Furthermore, numerous post-processing steps such as “superpixel projection” and rescoring
are performed. Dai et al. [65] addressed some of these issues by designing one end-to-
end trained network that generates box-proposals, creates foreground masks from these
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

proposals and then classifies these masks. This network can be seen as an extension of the
end-to-end Faster-RCNN [243] detection framework, which generates box-proposals and
classifies them. Additionally, Liu et al. [184] formulated an end-to-end version of the SDS
network [112], whilst [174] iteratively refined object proposals.

On a separate track, algorithms have also been developed that do not require object
detectors. Zhang et al. [325, 326] segmented car instances by predicting the depth ordering
of each pixel in the image. Unlike the previous detection-based approaches, this method
reasoned globally about all instances in the image simultaneously (rather than individual
proposals) with an MRF-based formulation. However, inference of this graphical model
was not performed end-to-end as shown to be possible in [329, 7, 46, 178]. Furthermore,
although this method does not use object detections, it is trained with ground truth depth
and assumes a maximum of nine cars in an image. Predicting all the instances in an image
simultaneously (rather than classifying individual proposals) requires a model to be able
to handle a variable number of output instances per image. As a result, [248] proposed a
Recurrent Neural Network (RNN) for this task. However, this model was only for a single
object category. Our proposed method not only outputs a variable number of instances, but
can also handle multiple object classes.

Liang et al. [175] developed another proposal-free method based on the semantic
segmentation network of [44]. The category-level segmentation, along with CNN features,
was used to predict instance-level bounding boxes. The number of instances of each class
was also predicted to enable a final spectral clustering step. However, this additional
information predicted by Liang’s network could have been obtained from an object detector.
Arnab et al. [8] also started with an initial semantic segmentation network [7], and combined
this with the outputs of an object detector using a CRF to reason about instances. This
method was not trained end-to-end though, and could not really recover from errors in
bounding-box localisation or occlusion.

Our method also has an initial semantic segmentation subnetwork, and uses the outputs
of an object detector. However, in contrast to [8] it is trained end-to-end to improve on
both semantic- and instance-segmentation performance (to our knowledge, this is the first
work to achieve this). Furthermore, it can handle detector localisation errors and occlusions
better due to the energy terms in our end-to-end CRF. In contrast to detection-based
approaches [112, 111, 65, 184], our network requires no additional post-processing to create
an instance segmentation map as in Fig. 4.1(c) and reasons about the entire image, rather
than independent proposals. This global reasoning allows our method to produce more
accurate segmentations. Our proposed system also handles a variable number of instances
per image, and thus does not assume a maximum number of instances like [325, 326].
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 Semantic Segmentation subnetwork  Instance Segmentation subnetwork 

Instance Unary Potentials 

Pixelwise 

CNN 
Semantic CRF 

Detector 
Box 

Global 

Shape 

Instance CRF 

Input Image Instance Segmentation 

Semantic Segmentation 

End-to-end Network 

K+1 

D+1 

Figure 4.2: Network overview: Our end-to-end trained network consists of semantic- and
instance-segmentation modules. The intermediate category-level segmentation, along with
the outputs of an object detector, are used to reason about instances. This is done by
instance unary terms which use information from the detector’s bounding boxes, the initial
semantic segmentation and also the object’s shape. A final CRF is used to combine all
this information together to obtain an instance segmentation. The output of the semantic
segmentation module is a fixed size W ×H × (K + 1) tensor where K is the number of
object classes, excluding background, in the dataset. The final output, however, is of a
variableW ×H × (D + 1) dimensions where D is the number of detected objects (and one
background label).

4.3 Proposed Approach

Our network (Fig. 4.2) contains an initial semantic segmentation module. We use the
semantic segmentation result, along with the outputs of an object detector, to compute
the unary potentials of a Conditional Random Field (CRF) defined over object instances.
We perform mean field inference in this random field to obtain the Maximum a Posteriori
(MAP) estimate, which is our labelling. Although our network consists of two conceptually
different parts – a semantic segmentation module, and an instance segmentation network –
the entire pipeline is fully differentiable, given object detections, and trained end-to-end.

4.3.1 Semantic Segmentation subnetwork

Semantic Segmentation assigns each pixel in an image a semantic class label from a given
set, L. In our case, this module uses the FCN8s architecture [189] which is based on the VGG
[267] ImageNet model. For better segmentation results, we include mean field inference
of a Conditional Random Field as the last layer of this module. This CRF contains the
densely-connected pairwise potentials described in [154] and is formulated as a recurrent
neural network as in [329]. Additionally, we include the Higher Order detection potential
described in [7]. This detection potential has two primary benefits: Firstly, it improves
semantic segmentation quality by encouraging consistency between object detections and
segmentations. Secondly, it also recalibrates detection scores. This detection potential is
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

similar to the one previously proposed by [164], [275], [306] and [318], but formulated
for the differentiable mean field inference algorithm. We employ this potential as we are
already using object detection information for identifying object instances in the next stage.
We denote the output at the semantic segmentation module of our network as the tensor
Q, where Qi(l) denotes the probability (obtained by applying the softmax function on the
network’s activations) of pixel i taking on the label l ∈ L.

4.3.2 Instance Segmentation subnetwork

At the input to our instance segmentation subnetwork, we assume that we have two inputs
available: The semantic segmentation predictions, Q, for each pixel and label, and a set
of object detections. For each input image, we assume that there are D object detections,
and that the ith detection is of the form (li, si, Bi) where li ∈ L is the detected class label,
si ∈ [0, 1] is the confidence score and Bi is the set of indices of the pixels falling within the
detector’s bounding box. Note that the number D varies for every input image.

The problem of instance segmentation can then be thought of as assigning every pixel to
either a particular object detection, or the background label. This is based on the assumption
that every object detection specifies a potential object instance. We define a multinomial
random variable, V , at each of the N pixels in the image, and V = [V1 V2 . . . VN ]T . Each
variable at pixel i, Vi, is assigned a label corresponding to its instance. This label set,
{0, 1, 2, ..., D} changes for each image since D, the number of detections, varies for every
image (0 is the background label). In the case of instance segmentation of images, the
quality of a prediction is invariant to the permutations of the instance labelling. For example,
labelling the “blue person” in Fig. 6.1(c) as “1” and the “purple person” as “2” is no different
to labelling them as “2” and “1” respectively. This condition is handled by our loss function
in Sec. 4.3.4.

Note that unlike works such as [325] and [326] we do not assume a maximum number of
possible instances and keep a fixed label set. Furthermore, since we are considering object
detection outputs jointly with semantic segmentation predictions, we have some robustness
to high-scoring false positive detections unlike methods such as [50, 111, 184] which refine
object detections into segmentations.

We formulate a Conditional Random Field over our instance variables, V , which consists
of unary and pairwise energies. The energy of the assignment v to all the variables,V, is

E(v) =
∑
i

U(vi) +
∑
i<j

P (vi, vj). (4.1)
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(a) Semantic Segmentation (b) Instance Segmentation

Figure 4.3: Instance segmentation using only the “Box” unary potential. This potential is
effective when we have a good initial semantic segmentation (a). Occlusions between objects
of the same class can be resolved by the pairwise term based on appearance differences.
Note that we can ignore the confident, false-positive “bottle” detections (b). This is in
contrast to methods such as [50, 112, 111, 169] which cannot recover from detection errors.

The unary energy is a sum of three terms, which take into account the object detection
bounding boxes, the initial semantic segmentation and shape information,

U(vi) = −ln[w1ψBox(vi) + w2ψGlobal(vi) + w3ψShape(vi)], (4.2)

and are described further in Sections 4.3.2.1 through 4.3.2.3. w1, w2 and w3 are all weighting
co-efficients learned via backpropagation.

4.3.2.1 Box Term

This potential encourages a pixel to be assigned to the instance corresponding to the kth

detection if it falls within the detection’s bounding box. This potential is proportional to
the probability of the pixel’s semantic class being equal to the detected class Qi(lk) and the
detection score, sk.

ψBox(Vi = k) =

{
Qi(lk)sk if i ∈ Bk
0 otherwise

(4.3)

As shown in Fig. 4.3, this potential performs well when the initial semantic segmentation is
good. It is robust to false positive detections, unlike methods which refine bounding boxes
[50, 112, 111] since the detections are considered in light of our initial semantic segmentation,
Q. Together with the pairwise term (Sec. 4.3.2.4), occlusions between objects of the same
class can be resolved if there are appearance differences in the different instances.
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

(a) Only Box term (b) Box and Global terms

Figure 4.4: The “Global” unary potential (b) is particularly effective in cases where the
input detection bounding box does not cover the entire extent of the object. Methods which
are based on refining bounding-box detections such as [112, 111, 50, 65] cannot cope with
poorly localised detections. Note, the overlaid detection boxes are an additional input to
our system.

4.3.2.2 Global Term

This term does not rely on bounding boxes, but only the segmentation prediction at a
particular pixel, Qi. It encodes the intuition that if we only know there are d possible
instances of a particular object class, and have no further localisation information, each
instance is equally probable, and this potential is proportional to the semantic segmentation
confidence for the detected object class at that pixel:

ψGlobal(Vi = k) = Qi(lk). (4.4)

As shown in Fig. 4.4, this potential overcomes cases where the bounding box does not cover
the entire extent of the object, as it assigns probability mass to a particular instance label
throughout all pixels in the image. This is also beneficial during training, as it ensures that
the final output is dependent on the segmentation prediction at all pixels in the image,
leading to error gradients that are more stable across batches and thus more amenable to
backpropagation.

4.3.2.3 Shape Term

We also incorporate shape priors to help us reason about occlusions involving multiple
objects of the same class, which may have minimal appearance variation between them, as
shown in Fig. 4.5. In such cases, a prior on the expected shape of an object category can
help us to identify the foreground instance within a bounding box. Previous approaches to
incorporating shape priors in segmentation [120, 50, 304] have involved generating “shape
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(a) Without shape term (b) With Shape term

Figure 4.5: The “Shape” unary potential (b) helps us to distinguish between the green and
purple sheep, which the other two unary potentials cannot. Input detections are overlaid on
the images.

exemplars” from the training dataset and, at inference time, matching these exemplars to
object proposals using the Chamfer distance [265, 181].

We propose a fully differentiable method: Given a set of shape templates, T , we warp
each shape template using bilinear interpolation into T̃ so that it matches the dimensions of
the kth bounding box, Bk. We then select the shape prior which matches the segmentation
prediction for the detected class within the bounding box,QBk

(lk), the best according to the
normalised cross correlation. Our shape prior is then the Hadamard (elementwise) product
(�) between the segmentation unaries and the matched shape prior:

t∗ = arg max
t∈T̃

∑
QBk

(lk)� t∥∥QBk
(lk)
∥∥ ‖t‖ (4.5)

ψ(VBk
= k) = QBk

(lk)� t∗. (4.6)

Equations 4.5 and 4.6 can be seen as a special case of max-pooling, and the numerator of
Eq. 4.5 is simply a convolution that produces a scalar output since the two arguments are
of equal dimension. Additionally, during training, we can consider the shape priors T as
parameters of our “shape term” layer and backpropagate through to the matched exemplar
t∗ to update it. In practice, we initialised these parameters with the shape priors described
in [304]. This consists of roughly 250 shape templates for each of five different aspect ratios.
These were obtained by clustering foreground masks of object instances from the training
set.

Here, we have only matched a single shape template to a proposed instance. This
method could be extended in future to matching multiple templates to an instance, in which
case each shape exemplar would correspond to a part of the object such as in DPM [88].
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4.3.2.4 Pairwise term

The pairwise term consists of densely-connected Gaussian potentials [154] and encourages
appearance and spatial consistency. The weights governing the importance of these terms
are also learnt via backpropagation, as in [329]. We find that these priors are useful in the
case of instance segmentation as well, since nearby pixels that have similar appearance
often belong to the same object instance. They are often able to resolve occlusions based on
appearance differences between objects of the same class (Fig. 4.3).

4.3.3 Inference of our Dynamic Instance CRF

We use mean field inference to approximately minimise the Gibbs Energy in Eq. 4.1 which
corresponds to finding the Maximum a Posteriori (MAP) labelling of the corresponding
probability distribution, P (v) = 1

Z exp (−E(v)) where Z is the normalisation factor. Mean
field inference is differentiable, and this iterative algorithm can be unrolled and seen as a
recurrent neural network [329]. Following this approach, we can incorporate mean field
inference of a CRF as a layer of our neural network. This enables us to train our entire
instance segmentation network end-to-end.

Because we deal with a variable number of instances for every image, our CRF needs to
be dynamically instantiated to have a different number of labels for every image, as observed
in [8]. Therefore, unlike [329], none of our weights are class-specific. This weight-sharing
not only allows us to deal with variable length inputs, but class-specific weights also do
not make sense in the case of instance segmentation since a class label has no particular
semantic meaning.

4.3.4 Loss Function

When training for instance segmentation, we have a single loss function which we back-
propagate through our instance- and semantic-segmentation modules to update all the
parameters. As discussed previously, we need to deal with different permutations of our
final labelling which could have the same final result. The works of [325] and [326] order
instances by depth to break this symmetry. However, this requires ground-truth depth
maps during training which we do not assume that we have. Proposal-based methods [65,
112, 111, 184] do not have this issue since they consider a single proposal at a time, rather
than the entire image. Our approach is similar to [248] in that we match the original ground
truth to our instance segmentation prediction based on the Intersection over Union (IoU)
[81] of each instance prediction and ground truth, as shown in Fig. 4.6.

More formally, we denote the ground-truth labelling of an image, G, to be a set of r
segments, {g1, g2, . . . , gr}, where each segment (set of pixels) is an object instance and has
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4.3. Proposed Approach

(a) Original ground truth, G (b) Prediction, P (c) “Matched” ground truth,
G∗

Figure 4.6: Due to the problem of label permutations, we “match” the ground truth with
our prediction before computing the loss when training.

an associated semantic class label. Our prediction, which is the output of our network, P , is
a set of s segments, {p1, p2, . . . , ps}, also where each segment corresponds to an instance
label and also has an associated class label. Note that r and s may be different since we
may predict greater or fewer instances than actually present. LetM denote the set of all
permutations of the ground-truth, G. As can be seen in Fig. 4.6, different permutations
of the ground-truth correspond to the same qualitative result. We define the “matched”
ground-truth, G∗, as the permutation of the original ground-truth labellingwhichmaximises
the IoU between the prediction, P , and ground truth:

G∗ = arg max
m∈M

IoU(m,P). (4.7)

Once we have the “matched” ground truth, G∗, (Fig. 4.6) for an image, we can apply any
loss function to train our network for segmentation. In our case, we use the common
cross-entropy loss function. We found that this performed better than the approximate IoU
loss proposed in [155, 248].

Crucially, we do not need to evaluate all permutations of the ground truth to compute Eq.
4.7, since it can be formulated as a maximum-weight bipartite matching problem. The edges
in our bipartite graph connect ground-truth and predicted segments. The edge weights
are given by the IoU between the ground truth and predicted segments if they share the
same semantic class label, and zero otherwise. Leftover segments are matched to “dummy”
nodes with zero overlap.
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Additionally, the ordering of the instances in our network are actually determined by
the object detector, which remains static during training. As a result, the ordering of our
predictions does not fluctuate much during training – it only changes in cases where there
are multiple detections overlapping an object.

4.3.5 Network Training

We first train a network for semantic segmentation with the standard cross-entropy loss. In
our case, this network is FCN8s [189] with a CRFwhose inference is unrolled as an RNN and
trained end-to-end, as described in [329] and [7]. To this pretrained network, we append our
instance segmentation subnetwork, and finetune with instance segmentation annotations
and only the loss detailed in Sec. 4.3.4. For the semantic segmentation subnetwork, we
train with an initial learning rate of 10−8, momentum of 0.9 and batch size of 20. The
learning rate is low since we do not normalise the loss by the number of pixels. This is
so that images with more pixels contribute a higher loss. The normalised learning rate is
approximately 2 × 10−3. When training our instance segmentation network as well, we
lower the learning rate to 10−12 and use a batch size of 1 instead. Decreasing the batch
size gave empirically better results. We also clipped gradients (a technique common in
training RNNs [226]) with `2 norms above 109. This thresholdwas set by observing “normal”
gradient magnitudes during training. The relatively high magnitude is due to the fact that
our loss is not normalised. In our complete network, we have two CRF inference modules
which are RNNs (one each in the semantic- and instance-segmentation subnetworks), and
gradient clipping facilitated successful training.

4.3.6 Discussion

Our network is able to compute a semantic and instance segmentation of the input image in a
single forward pass. We do not require any post-processing, such as the patch aggregation of
[184], “mask-voting” of [65], “superpixel projection” of [112, 111, 169] or spectral clustering
of [175]. The fact that we compute an initial semantic segmentationmeans that we have some
robustness to errors in the object detector (Fig. 4.3). Furthermore, we are not necessarily
limited by poorly localised object detections either (Fig. 4.4). Our CRF model allows us to
reason about the entire image at a time, rather than consider independent object proposals,
as done in [112, 111, 65, 184, 169]. Although we do not train our object detector jointly
with the network, it also means that our segmentation network and object detector do not
succumb to the same failure cases. Moreover, it ensures that our instance labelling does
not “switch” often during training, which makes learning more stable. Finally, note that
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although we perform mean field inference of a CRF within our network, we do not optimise
the CRF’s likelihood, but rather a cross-entropy loss (Sec 4.3.4).

4.4 Experimental Evaluation

Sections 4.4.1 to 4.4.5 describe our evaluation on the Pascal VOC validation set [81] and the
Semantic Boundaries Dataset (SBD) [110] (which provides per-pixel annotations to 11355
previously unlabelled images from Pascal VOC). Section 4.4.6 details results on Cityscapes
[57].

4.4.1 Experimental Details

We first train a network for semantic segmentation, thereafter we finetune it to the task
of instance segmentation, as described in Sec. 4.3.5. Our training data for the semantic
segmentation pretraining consists of images from Pascal VOC [81], SBD [110] and Microsoft
COCO [180]. Finally, when finetuning for instance segmentation, we use only training
data from either the VOC dataset, or from the SBD dataset. We train separate models for
evaluating on the VOC validation set, and the SBD validation set. In each case, we remove
validation set images from the initial semantic segmentation pretraining set. We use the
publicly available R-FCN object detection framework [66], and ensure that the images used
to train the detector do not fall into our test sets for instance segmentation.

4.4.2 Evaluation Metrics

We report the mean Average Precision over regions (AP r) as defined by [112]. The difference
between AP r and the AP metric used in object detection [81] is that the Intersection over
Union (IoU) is computed over predicted and ground-truth regions instead of bounding
boxes. Furthermore, the standard AP metric uses an IoU threshold of 0.5 to determine
whether a prediction is correct or not. Here, we use a variety of IoU thresholds since larger
thresholds require more precise segmentations. Additionally, we report the AP rvol which is
the average of the AP r for 9 IoU thresholds ranging from 0.1 to 0.9 in increments of 0.1.

However, we also observe that theAP r metric requires an algorithm to produce a ranked
list of segments and their object class. It does not require, nor evaluate, the ability of an
algorithm to produce a globally coherent segmentation map of the image, for example
Fig. 6.1c. To measure this, we propose the “Matching IoU” which matches the predicted
image and ground truth, and then calculates the corresponding IoU as defined in [81]. This
matching procedure is the same as described in Sec. 4.3.4. This measure was originally
proposed in [317], but has not been used since in evaluating instance segmentation systems.
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Table 4.1: The effect of the different CRF unary potentials, and end-to-end training with
them, on the VOC 2012 validation set.

AP r
AP rvol

match
IoU0.5 0.7 0.9

Box Term
(piecewise) 60.0 47.3 21.2 54.9 42.6

Box+Global
(piecewise) 59.1 46.1 23.4 54.6 43.0

Box+Global+Shape
(piecewise) 59.5 46.4 23.3 55.2 44.8

Box Term
(end-to-end) 60.7 47.4 24.6 56.2 46.9

Box+Global
(end-to-end) 60.9 48.1 25.5 56.7 47.1

Box+Global+Shape
(end-to-end) 61.7 48.6 25.1 57.5 48.3

4.4.3 Effect of Instance Potentials and End-to-End training

We first perform ablation studies on the VOC 2012 validation set. This dataset, consisting of
1464 training and 1449 validation images has very high-quality annotations with detailed
object delineations which makes it the most suited for evaluating pixel-level segmentations.

In Tab. 4.1, we examine the effect of each of our unary potentials in our Instance
subnetwork on overall performance. Furthermore, we examine the effect of end-to-end
training the entire network as opposed to piecewise training. Piecewise training refers to
freezing the pretrained semantic segmentation subnetwork’s weights and only optimising
the instance segmentation subnetwork’s parameters. Note that when training with only
the “Box” (Eq. 4.3) unary potential and pairwise term, we also have to add in an additional
“Background” detection which encompasses the entire image. Otherwise, we cannot classify
the background label.

We can see that each unary potential improves overall instance segmentation results,
both in terms of AP rvol and the Matching IoU. The “Global” term (Eq. 4.4) shows particular
improvement over the “Box” term at the high AP r threshold of 0.9. This is because it
can overcome errors in bounding box localisation (Fig. 4.4) and leverage our semantic
segmentation network’s accurate predictions to produce precise labellings. The “Shape”
term’s improvement in the AP rvol is primarily due to an improvement in the AP r at low
thresholds. By using shape priors, we are able to recover instances which were occluded
and missed out. End-to-end training also improves results at all AP r thresholds. Training
with just the “Box” term shows a modest improvement in the AP rvol of 1.3%. Training with
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Table 4.2: Comparison of Instance Segmentation performance to recent methods on the
VOC 2012 validation set.

Method AP r
AP rvol0.5 0.6 0.7 0.8 0.9

SDS [112] 43.8 34.5 21.3 8.7 0.9 –
Chen et al. [50] 46.3 38.2 27.0 13.5 2.6 –
PFN [175] 58.7 51.3 42.5 31.2 15.7 52.3
Arnab et al. [8] 58.3 52.4 45.4 34.9 20.1 53.1
MPA 1-scale [184] 60.3 54.6 45.9 34.3 17.3 54.5
MPA 3-scale [184] 62.1 56.6 47.4 36.1 18.5 56.5
Ours 61.7 55.5 48.6 39.5 25.1 57.5

the “Global” and “Shape” terms shows larger improvements of 2.1% and 2.3% respectively.
This may be because the “Box” term only considers the semantic segmentation at parts of
the image covered by object detections. Once we include the “Global” term, we consider the
semantic segmentation over the entire image for the detected class. Training makes more
efficient use of images, and error gradients are more stable in this case.

4.4.4 Results on VOC validation Set

We then compare our best instance segmentation model to recent methods on the VOC
validation Set in Tab. 4.2. The fact that our algorithm achieves the highest AP r at thresholds
above 0.7 indicates that our method produces more detailed and accurate segmentations.

At an IoU threshold of 0.9, our improvement over the previous state-of-the-art (MPA [184])
is 6.6%, which is a relative improvement of 36%. Unlike [184, 112, 50], our network performs
an initial semantic segmentation which may explain our more accurate segmentations.
Other segmentation-based approaches, [8, 175] are not fully end-to-end trained. We also
achieve the bestAP rvol of 57.5%. The relatively small difference inAP rvol to MPA [184] despite
large improvements at high IoU thresholds indicates that MPA performs better at low IoU
thresholds. Proposal-based methods, such as [184, 112] are more likely to perform better
at low IoU thresholds since they output more proposals than actual instances in an image
(SDS evaluates 2000 proposals per image). Furthermore, note that whilst MPA takes 8.7s to
process an image [184], our method requires approximately 1.5s on the same Titan X GPU.
More detailed qualitative and quantitative results, including success and failure cases, are
included in the supplementary material.

4.4.5 Results on SBD Dataset

We also evaluate our model on the SBD dataset, which consists of 5623 training and 5732
validation images, as shown in Tab. 4.3. Following other works, we only report AP r
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Table 4.3: Comparison of Instance Segmentation performance on the SBD Dataset

Method AP r
AP rvol

match
0.5 0.7 IoU

SDS [112] 49.7 25.3 41.4 –
MPA 1-scale [184] 55.5 – 48.3 –
Hypercolumn [111] 56.5 37.0 – –
IIS [169] 60.1 38.7 – –
CFM [64] 60.7 39.6 – –
Hypercolumn rescore [111] 60.0 40.4 – –
MPA 3-scale rescore [184] 61.8 – 52.0 –
MNC [65] 63.5 41.5 – 39.0
MNC, Instance FCN [62] 61.5 43.0 – –
IIS sp. projection, rescore [169] 63.6 43.3 – –

Ours (piecewise) 59.1 42.1 52.3 41.8
Ours (end-to-end) 62.0 44.8 55.4 47.3

results at IoU thresholds of 0.5 and 0.7. However, we provide more detailed results in
our supplementary material. Once again, we show significant improvements over other
work at high AP r thresholds. Here, our AP r at 0.7 improves by 1.5% over the previous
state-of-the-art [169]. Note that [169, 184, 111] perform additional post-processing where
their results are rescored using an additional object detector. In contrast, our results are
obtained by a single forward pass through our network. We have also improved substantially
on the AP rvol measure (3.4%) compared to other works which have reported it. We also used
the publicly available source code1, model and default parameters of MNC [65] to evaluate
the “Matching IoU”. Our method improves this by 8.3%. This metric is a stricter measure
of segmentation performance, and our method, which is based on an initial semantic
segmentation and includes a CRF as part of training therefore performs better.

4.4.6 Results on Cityscapes

Finally, we evaluate our algorithm on the Cityscapes road-scene understanding dataset
[57]. This dataset consists of 2975 training images, and the held-out test set consisting of
1525 images are evaluated on an online server. None of the 500 validation images were
used for training. We use an initial semantic segmentation subnetwork that is based on
the ResNet-101 architecture [328], and all of the instance unary potentials described in Sec.
4.3.2.

As shown in Tab. 4.4, our method sets a new state-of-the-art on Cityscapes, surpassing
concurrent work [15] and the best previous published work [287] by significant margins.

1https://github.com/daijifeng001/MNC
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4.5. Conclusion and Future Work

Table 4.4: Results on Cityscapes test set. Evaluation metrics and results of competing
methods obtained from the online server. The “AP” metric of Cityscapes is similar to our
AP rvol metric.

Method AP AP at 0.5 AP 100m AP 50m

Ours 23.4 45.2 36.8 40.9
DWT [15] 19.4 35.3 31.4 36.8
SAIS [114] 17.4 36.7 29.3 34.0
InstanceCut [143] 13.0 27.9 22.1 26.1
Graph Decomp. [168] 9.8 23.2 16.8 20.3
RecAttend [242] 9.5 18.9 16.8 20.9
Pixel Encoding [287] 8.9 21.1 15.3 16.7
R-CNN [57] 4.6 12.9 7.7 10.3

4.5 Conclusion and Future Work

We have presented an end-to-end instance segmentation approach that produces intermedi-
ate semantic segmentations, and shown that finetuning for instance segmentation improves
our network’s semantic segmentations. Our approach differs from other methods which
derive their architectures from object detection networks [65, 184, 111] in that our approach
is more similar to a semantic segmentation network. As a result, our system produces more
accurate and detailed segmentations as shown by our substantial improvements at highAP r

thresholds. Moreover, our system produces segmentation maps naturally, and in contrast to
other published work, does not require any post-processing. Finally, our network produces
a variable number of outputs, depending on the number of instances in the image. Our
future work is to incorporate an object detector into the end-to-end training of our system
to create a network that performs semantic segmentation, object detection and instance
segmentation jointly. Possible techniques for doing this are suggested by by UberNet [150]
and the Cross-Stitch units described in [204].
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Figure 4.7: A visualisation of theAP r obtained for each of the 20 classes on the VOC dataset,
at nine different IoU thresholds. The x-axis represents the IoU threshold, and the y-axis
each of the Pascal classes. Therefore, each “column” of this figure corresponds to the AP r
per class at a particular threshold, and is thus an alternate representation to the results
tables. Best viewed in colour.

Appendices

In this appendix, we include more detailed qualitative and quantitative results on the VOC
and SBD datasets.

Section 4.A shows more detailed results on the VOC dataset. Figure 4.7 shows a
visualisation of our results at different AP r thresholds, and Tables 4.6 to 4.8 show per-class
AP r results at thresholds of 0.5, 0.7 and 0.9.

Section 4.B shows more detailed results on the SBD dataset. Table 4.5 shows our mean
AP r results at thresholds from 0.5 to 0.9, whilst Tables 4.9 and 4.10 show per-class AP r

results at thresholds of 0.7 and 0.5 respectively.
Figures 4.9 and 4.10 show success and failure cases of our algorithm. Figure 4.11

compares the results of our algorithm to the publicly available model for MNC [65]. Figure
4.12 compares our results to those of FCIS [172], concurrent work which won the COCO
2016 challenge. Figure 4.13 presents some qualitative results on the Cityscapes dataset.

4.A Detailed results on the Pascal VOC dataset

Figure 4.7 shows a visualisation of the AP r obtained by our method for each class across
nine different thresholds. Each “column” of Fig. 4.7 corresponds to theAP r for each class at
a given IoU threshold. It is therefore an alternate representation for the results tables (Tables
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4.B. Detailed results on the SBD dataset

Figure 4.8: A visualisation of the AP r obtained for each of the 20 classes on the SBD dataset,
at nine different IoU thresholds. The x-axis represents the IoU threshold, and the y-axis
each of the Pascal classes. Therefore, each “column” of this figure corresponds to the AP r
per class at a particular threshold, and is thus an alternate representation to the results
tables. Best viewed in colour.

4.6 to 4.8). We can see that our method struggles with classes such as “bicycle”, “chair”,
“dining table” and “potted plant”. This may be explained by the fact that current semantic
segmentation systems (including ours) struggle with these classes. All recent methods on
the Pascal VOC leaderboard2 obtain an IoU for these classes which is lower than the mean
IoU for all classes. In fact the semantic segmentation IoU for the “chair” class is less than
half of the mean IoU for all the classes for 16 out of the 20 most recent submissions on the
VOC leaderboard at the time of writing.

Tables 4.6 to 4.8 show per-class instance segmentation results on the VOC dataset, at IoU
thresholds of 0.9, 0.7 and 0.5 respectively. At an IoU threshold of 0.9, our method achieves
the highestAP r for 16 of the 20 object classes. At the threshold of 0.7, we achieve the highest
AP r in 15 classes. Finally, at an IoU threshold of 0.5, our method, MPA 3-scale [184] and
PFN [175] each achieve the highest AP r for 6 categories.

4.B Detailed results on the SBD dataset

Once again, we show a visualisation of the AP r obtained by our method for each class
across nine different thresholds (Fig. 4.8). The trend is quite similar to the VOC dataset in
that our algorithm struggles on the same object classes (“chair”, “dining table”, “potted

2http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Table 4.5: Comparison of Instance Segmentation performance at multiple AP r thesholds on
the SBD validation set.

Method AP r
AP rvol0.5 0.6 0.7 0.8 0.9

Ours (piecewise) 59.1 51.9 42.1 29.4 12.0 52.3
Ours (end-to-end ) 62.0 54.0 44.8 32.3 13.8 55.4

plant”, “bottle”). Note that our AP r for the “bicycle” class has improved compared to the
VOC dataset. This is probably because the VOC dataset has more detailed annotations. In
the VOC dataset, each spoke of a bicycle’s wheel is often labelled, whilst in SBD, the entire
wheel is labelled as a single circle with the “bicycle” label. Therefore, the SBD dataset’s
coarser labelling makes it easier for an algorithm to perform well on objects with fine details.

Table 4.5 shows our mean AP r over all classes at thresholds ranging from 0.5 to 0.9.
Our AP r at 0.9 is low compared to the result which we obtained on the VOC dataset.
This could be for a number of reasons: As the SBD dataset is not as finely annotated as
the VOC dataset, it might not be suited for measuring the AP r at such high thresholds.
Additionally, the training data is not as good for training our system which includes a
CRF and is therefore able to delineate sharp boundaries. Finally, as the SBD dataset has
5732 validation images (compared to the 1449 in VOC), it leaves less data for pretraining
our initial semantic segmentation module. This may hinder our network in being able to
produce precise segmentations.

Tables 4.9 and 4.10 show per-class instance segmentation results on the SBD dataset,
at IoU thresholds of 0.7 and 0.5 respectively. We can only compare results at these two
thresholds since these are the only thresholds which other work has reported.
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network
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4.B. Detailed results on the SBD dataset
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Input image Semantic Segmentation Instance Segmentation Ground truth

Figure 4.9: Success cases of our method. First and second row: Our algorithm can leverage
good initial semantic segmentations, and detections, to produce an instance segmentation.
Third row: Notice that we have ignored three false-positive detections. Additionally, the
red bounding box does not completely encompass the person, but our algorithm is still
able to associate pixels “outside-the-box” with the correct detection (also applies to row
2). Fourth row: Our system is able to deal with the heavily occluded sheep, and ignore the
false-positive detection. Fifth row: We have not been able to identify one bicycle on the
left since it was not detected, but otherwise have performed well. Sixth row: Although
subjective, the train has not been annotated in the dataset, but both our initial semantic
segmentation and object detection networks have identified it.
Note that the first three images are from the VOC dataset, and the last three from SBD.
Annotations in the VOC dataset are more detailed, and also make more use of the grey
“ignore” label to indicate uncertain areas in the image. The first column shows the input
image, and the results of our object detector which are another input to our network. Best
viewed in colour.



4.B. Detailed results on the SBD dataset

Input image Semantic Segmentation Instance Segmentation Ground truth

Figure 4.10: Failure cases of our method. First row: Both our initial detector, and semantic
segmentation system did not identify a car in the background. Additionally, the “brown”
person prediction actually consists of two people that have been merged together. This is
because the detector did not find the background person. Second row: Our initial semantic
segmentation identified the table, but it is not there in the Instance Segmentation. This
is because there was no “table detection” to associate these pixels with. Using heuristics,
we could propose additional detections in cases like these. However, we have not done
this in our work. Third row: A difficult case where we have segmented most of the people.
However, sometimes two people instances are joined together as one person instance. This
problem is because we do not have a detection for each person in the image. Fourth row: Due
to our initial semantic segmentation, we have not been able to segment the green person
and table correctly. Fifth row: We have failed to segment a bird although it was detected.
Sixth row: The occluding cows, which all appear similar, pose a challenge, even with our
shape priors. The first column shows the input image, and the results of our object detector
which are another input to our network. Best viewed in colour.
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Input image MNC [65] Ours Ground truth

Figure 4.11: Comparison to MNC [65]. The above examples emphasise the advantages in our
method over MNC [65]. Unlike proposal-based approaches such as MNC, our method can handle
false-positive detections, poor bounding box localisation, reasons globally about the image and
also produces more precise segmentations due to the initial semantic segmentation module which
includes a differentiable CRF.Row 1 shows a casewhereMNC,which scores segment-based proposals,
is fooled by a false-positive detection and segments an imaginary human (yellow segment). Our
method is robust to false-positive detections due to the initial semantic segmentation module which
does not have the same failure modes as the detector. Rows 2, 3 and 4 show howMNC [65] cannot
deal with poorly localised bounding boxes. The horizontal boundaries of the red person in Row 2,
and light-blue person in Row 4 correspond to the limits of the proposal processed by MNC. Our
method, in contrast, can segment “outside the detection bounding box” due to the global instance
unary potential (Eq. 4.4). As MNC does not reason globally about the image, it cannot handle cases
of overlapping bounding boxes well, and produces more instances than there actually are. The first
column shows the input image, and the results of our object detector which are another input to
our network. MNC does not use these detections, but does internally produce box-based proposals
which are not shown. Best viewed in colour.
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4.B. Detailed results on the SBD dataset

Input image MNC [65] Ours Ground truth

Figure 4.11 continued: Comparison to MNC [65]. The above examples show that our
method produces more precise segmentations than MNC, that adhere to the boundaries
of the objects. However, in Rows 3, 4 and 5, we see that MNC is able to segment instances
that our method misses out. In Row 3, our algorithm does not segment the baby, although
there is a detection for it. This suggests that our shape prior which was formulated to
overcome such occlusions could be better. As MNC processes individual instances, it does
not have a problem with dealing with small, occluding instances. In Row 4, MNC has again
identified a person that our algorithm could not. However, this is because we did not have
a detection for this person. In Row 5, MNC has segmented the horses on the right better
than our method. The first column shows the input image, and the results of our object
detector which are another input to our network. MNC does not use these detections, but
does internally produce box-based proposals which are not shown. We used the publicly
available code, models and default parameters of MNC to produce this figure. Best viewed
in colour.
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4. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Input image FCIS [172] Ours

Figure 4.12: Comparison to FCIS [172]. The above images compare our method to the concurrent
work, FCIS [172], which was trained on COCO [180] and won the COCO 2016 challenge. Unlike
proposal-based methods such as FCIS, our method can handle false-positive detections and poor
bounding-box localisation. Furthermore, as our method reasons globally about the image, one
pixel can only be assigned to a single instance, which is not the case with FCIS. Our method also
producesmore precise segmentations, as it includes a differentiable CRF, and it is based off a semantic
segmentation network. The results of FCIS are obtained from their publicly available results on the
COCO test set (https://github.com/daijifeng001/TA-FCN). Note that FCIS is trained on COCO,
and our model is trained on Pascal VOC which does not have as many classes as COCO, such as
“umbrella” and “suitcase” among others. As a result, we are not able to detect these objects. The first
column shows the input image, and the results of our object detector which are another input to our
network. FCIS does not use these detections, but does internally produce proposals which are not
shown. Best viewed in colour.
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4.B. Detailed results on the SBD dataset

Input image Semantic Segmentation Instance Segmentation

Figure 4.13: Sample results on the Cityscapes dataset. The above images show how our
method can handle the large numbers of instances present in the Cityscapes dataset. Unlike
other recent approaches, our algorithm can deal with objects that are not continuous – such
as the car in the first row which is occluded by a pole. Best viewed in colour.
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Chapter 5

Weakly- and Semi-Supervised
Panoptic Segmentation

We present a weakly supervised model that jointly performs both semantic- and instance-
segmentation – a particularly relevant problem given the substantial cost of obtaining
pixel-perfect annotation for these tasks. In contrast to many popular instance segmentation
approaches based on object detectors, our method does not predict any overlapping instances.
Moreover, we are able to segment both “thing” and “stuff” classes, and thus explain all
the pixels in the image. “Thing” classes are weakly-supervised with bounding boxes, and
“stuff” with image-level tags. We obtain state-of-the-art results on Pascal VOC, for both
full and weak supervision (which achieves about 95% of fully-supervised performance).
Furthermore, we present the first weakly-supervised results on Cityscapes for both semantic-
and instance-segmentation. Finally, we use our weakly supervised framework to analyse
the relationship between annotation quality and predictive performance, which is of interest
to dataset creators.

5.1 Introduction

Convolutional Neural Networks (CNNs) excel at a wide array of image recognition tasks
[117, 267, 243]. However, their ability to learn effective representations of images requires
large amounts of labelled training data [254, 274]. Annotating training data is a particular
bottleneck in the case of segmentation, where labelling each pixel in the image by hand
is particularly time-consuming. This is illustrated by the Cityscapes dataset where finely
annotating a single image took “more than 1.5h on average" [57]. In this paper, we address
the problems of semantic- and instance-segmentation using only weak annotations in the
form of bounding boxes and image-level tags. Bounding boxes take only 7 seconds to draw
using the labelling method of [220], and image-level tags an average of 1 second per class
[219]. Using only these weak annotations would correspond to a reduction factor of 30

85



5. Weakly- and Semi-Supervised Panoptic Segmentation

✓ ✓ ✓ ✓ ✓ ✓ ✓

Training Data Prediction

Figure 5.1: We propose a method to train an instance segmentation network from weak
annotations in the form of bounding-boxes and image-level tags. Our network can explain
both “thing” and “stuff” classes in the image, and does not produce overlapping instances
as common detector-based approaches [116, 65, 172].

in labelling a Cityscapes image which emphasises the importance of cost-effective, weak
annotation strategies.

Our work differs from prior art on weakly-supervised segmentation [151, 301, 221,
63, 20] in two primary ways: Firstly, our model jointly produces semantic- and instance-
segmentations of the image, whereas the aforementioned works only output instance-
agnostic semantic segmentations. Secondly, we consider the segmentation of both “thing”
and “stuff” classes [91, 3], in contrast to most existing work in both semantic- and instance-
segmentation which only consider “things”.

We define the problem of instance segmentation as labelling every pixel in an image with
both its object class and an instance identifier [9, 8, 326]. It is thus an extension of semantic
segmentation, which only assigns each pixel an object class label. “Thing” classes (such
as “person” and “car”) are countable and are also studied extensively in object detection
[81, 180]. This is because their finite extent makes it possible to annotate tight, well-defined
bounding boxes around them. “Stuff” classes (such as “sky” and “vegetation”), on the
other hand, are amorphous regions of homogeneous or repetitive textures [91]. As these
classes have ambiguous boundaries and no well-defined shape they are not appropriate to
annotate with bounding boxes [177]. Since “stuff” classes are not countable, we assume
that all pixels of a stuff category belong to the same, single instance. Recently, this task of
jointly segmenting “things” and “stuff” at an instance-level has also been named “Panoptic
Segmentation” by [142].

Note that many popular instance segmentation algorithms which are based on object
detection architectures [116, 65, 172, 183, 184] are not suitable for this task, as also noted
by [142]. These methods output a ranked list of proposed instances, where the different
proposals are allowed to overlap each other as each proposal is processed independently of
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5.2. Related Work

the other. Consequently, these architectures are not suitable where each pixel in the image
has to be explained, and assigned a unique label of either a “thing” or “stuff” class as shown
in Fig. 5.1. This is in contrast to other instance segmentation methods such as [9, 15, 69, 143,
182].

In this work, we use weak bounding box annotations for “thing” classes, and image-level
tags for “stuff” classes. Whilst there are many previous works on semantic segmentation
from image-level labels, the best performing ones [301, 302, 216, 42] used a saliency prior.
The salient parts of an image are “thing” classes in popular saliency datasets [51, 315, 264]
and this prior therefore does not help at all in segmenting “stuff” as in our case. We also
consider the “semi-supervised” case where we have a mixture of weak- and fully-labelled
annotations.

To our knowledge, this is the first work which performs weakly-supervised, non-
overlapping instance segmentation, allowing our model to explain all “thing” and “stuff”
pixels in the image (Fig. 5.1). Furthermore, our model jointly produces semantic- and
instance-segmentations of the image, which to our knowledge is the first time such a model
has been trained in a weakly-supervised manner. Moreover, to our knowledge, this is the
first work to perform either weakly supervised semantic- or instance-segmentation on the
Cityscapes dataset. On Pascal VOC, our method achieves about 95% of fully-supervised
accuracy on both semantic- and instance-segmentation. Furthermore, we surpass the
state-of-the-art on fully-supervised instance segmentation as well. Finally, we use our
weakly- and semi-supervised framework to examine how model performance varies with
the number of examples in the training set and the annotation quality of each example, with
the aim of helping dataset creators better understand the trade-offs they face in this context.

5.2 Related Work

Instance segmentation is a popular area of scene understanding research. Most top-
performing algorithms modify object detection networks to output a ranked list of segments
instead of boxes [116, 65, 172, 183, 184, 112]. However, all of these methods process
each instance independently and thus overlapping instances are produced – one pixel can
be assigned to multiple instances simultaneously. Additionally, object detection based
architectures are not suitable for labelling “stuff” classes which cannot be described well by
bounding boxes [177]. These limitations, common to all of these methods, have also recently
been raised by Kirillov et al. [142]. We observe, however, that there are other instance
segmentation approaches based on initial semantic segmentation networks [9, 15, 69, 143]
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5. Weakly- and Semi-Supervised Panoptic Segmentation

which do not produce overlapping instances and can naturally handle “stuff” classes. Our
proposed approach extends methods of this type to work with weaker supervision.

Although prior work on weakly-supervised instance segmentation is limited, there are
many previous papers on weakly-supervised semantic segmentation, which is also relevant
to our task. Early work in weakly-supervised semantic segmentation considered cases
where images were only partially labelled using methods based on Conditional Random
Fields (CRFs) [295, 121]. Subsequently, many approaches have achieved high accuracy
using only image-level labels [151, 301, 231, 228], bounding boxes [139, 221, 63], scribbles
[177] and points [20]. Additionally, the motion cues in videos (which were only annotated
with video-level tags) have also been exploited to learn semantic segmentation models of
moving objects [281, 127]. A popular paradigm for these approaches is “self-training” [257]:
a model is trained in a fully-supervised manner by generating the necessary ground truth
with the model itself in an iterative, Expectation-Maximisation (EM)-like procedure [221,
63, 177, 228]. Such approaches are sensitive to the initial, approximate ground truth which
is used to bootstrap training of the model. To this end, Khoreva et al. [139] showed how,
given bounding box annotations, carefully chosen unsupervised foreground-background
and segmentation-proposal algorithms could be used to generate high-quality approximate
ground truth such that iterative updates to it were not required thereafter.

Our work builds on the “self-training” approach to perform instance segmentation. To
our knowledge, only Khoreva et al. [139] have published results on weakly-supervised
instance segmentation. However, the model used by [139] was not competitive with the
existing instance segmentation literature in a fully-supervised setting. Moreover, [139]
only considered bounding-box supervision, whilst we consider image-level labels as well.
Recent work by [128] modifies Mask-RCNN [116] to train it using fully-labelled examples
of some classes, and only bounding box annotations of others. Our proposed method can
also be used in a semi-supervised scenario (with a mixture of fully- and weakly-labelled
training examples), but unlike [128], our approach works with only weak supervision as
well. Furthermore, in contrast to [139] and [128], our method does not produce overlapping
instances, handles “stuff” classes and can thus explain every pixel in an image as shown in
Fig. 5.1.

5.3 Proposed Approach

We first describe how we generate approximate ground truth data to train semantic- and
instance-segmentation models with in Sec. 5.3.1 through 5.3.4. Thereafter, in Sec. 5.3.5, we
discuss the network architecture that we use. To demonstrate our method and ensure the
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reproducibility of our results, we release our approximate ground truth and the code to
generate it1.

5.3.1 Training with weaker supervision

In a fully-supervised setting, semantic segmentation models are typically trained by
performing multinomial logistic regression independently for each pixel in the image. The
loss function, the cross entropy between the ground-truth distribution and the prediction,
can be written as

L = −
∑
i∈Ω

log p(li|I) (5.1)

where li is the ground-truth label at pixel i, p(li|I) is the probability (obtained from a softmax
activation) predicted by the neural network for the correct label at pixel i of image I and Ω

is the set of pixels in the image.
In the weakly-supervised scenarios considered in this paper, we do not have reliable

annotations for all pixels in Ω. Following recent work [139, 151, 20, 228], we use our weak
supervision and image priors to approximate the ground-truth for a subset Ω′ ⊂ Ω of the
pixels in the image. We then train our network using the estimated labels of this smaller
subset of pixels. Section 5.3.2 describes how we estimate Ω′ and the corresponding labels
for images with only bounding-box annotations, and Sec. 5.3.3 for image-level tags.

Our approach to approximating the ground truth is based on the principle of only
assigning labels to pixels which we are confident about, and marking the remaining set of
pixels, Ω \ Ω′, as “ignore” regions over which the loss is not computed. This is motivated
by Bansal et al. [16] who observed that sampling only 4% of the pixels in the image for
computing the loss during fully-supervised training yielded about the same results as
sampling all pixels, as traditionally done. This supported their hypothesis that most of
the training data for a pixel-level task is statistically correlated within an image, and that
randomly sampling a much smaller set of pixels is sufficient. Moreover, [234] and [170]
showed improved results by respectively sampling only 6% and 12% of the hardest pixels,
instead of all of them, in fully-supervised training.

5.3.2 Approximate ground truth from bounding box annotations

We use GrabCut [252] (a classic foreground segmentation technique given a bounding-box
prior) and MCG [5] (a segment-proposal algorithm) to obtain a foreground mask from a
bounding-box annotation, following [139]. To achieve high precision in this approximate

1https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation
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5. Weakly- and Semi-Supervised Panoptic Segmentation

(a) Input image (b) Semantic segmentation
approximate ground truth

(c) Instance segmentation
approximate ground truth

Figure 5.2: An example of generating approximate ground truth from bounding box
annotations for an image (a). A pixel is labelled the with the bounding-box label if it belongs
to the foreground masks of both GrabCut [252] and MCG [5] (b). Approximate instance
segmentation ground truth is generated using the fact that each bounding box corresponds
to an instance (c). Grey regions are “ignore” labels over which the loss is not computed due
to ambiguities in label assignment.

labelling, a pixel is only assigned to the object class represented by the bounding box if both
GrabCut and MCG agree (Fig. 5.2).

Note that the final stage ofMCGuses a random forest trainedwith pixel-level supervision
on Pascal VOC to rank all the proposed segments. We do not perform this ranking step,
and obtain a foreground mask from MCG by selecting the proposal that has the highest
Intersection over Union (IoU) with the bounding box annotation.

This approach is used to obtain labels for both semantic- and instance-segmentation as
shown in Fig. 5.2. As each bounding box corresponds to an instance, the foreground for
each box is the annotation for that instance. If the foreground of two bounding boxes of the
same class overlap, the region is marked as “ignore” as we do not have enough information
to attribute it to either instance.

5.3.3 Approximate ground-truth from image-level annotations

When only image-level tags are available, we leverage the fact that CNNs trained for image
classification still have localisation information present in their convolutional layers [330].
Consequently, when presented with a dataset of only images and their tags, we first train a
network to perform multi-label classification. Thereafter, we extract weak localisation cues
for all the object classes that are present in the image (according to the image-level tags).
These localisation heatmaps (as shown in Fig. 5.3) are thresholded to obtain the approximate
ground-truth for a particular class. It is possible for localisation heatmaps for different
classes to overlap. In this case, thresholded heatmaps occupying a smaller area are given
precedence. We found this rule, like [151], to be effective in preventing small or thin objects
from being missed.
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Input image Localisation heatmaps for road,
building, vegetation and sky

Approximate ground truth generated
from image tags

Figure 5.3: Approximate ground truth generated from image-level tags using weak local-
isation cues from a multi-label classification network. Cluttered scenes from Cityscapes
with full “stuff” annotations makes weak localisation more challenging than Pascal VOC
and ImageNet that only have “things” labels. Black regions are labelled “ignore”. Colours
follow Cityscapes convention.

Input Image Iteration 0 Iteration 2 Iteration 5 Ground truth

Figure 5.4: By using the output of the trained network, the initial approximate ground truth
produced according to Sec. 5.3.2 and 5.3.3 (Iteration 0) can be improved. Black regions
are “ignore” labels over which the loss is not computed in training. Note for instance
segmentation, permutations of instance labels of the same class are equivalent.

Though this approach is independent of the weak localisation method used, we used
Grad-CAM [258]. Grad-CAM is agnostic to the network architecture unlike CAM [330] and
also achieves better performance than Excitation BP [324] on the ImageNet localisation task
[254].

We cannot differentiate different instances of the same class from only image tags as
the number of instances is unknown. This form of weak supervision is thus appropriate
for “stuff” classes which cannot have multiple instances. Note that saliency priors, used by
many works such as [301, 302, 216] on Pascal VOC, are not suitable for “stuff” classes as
popular saliency datasets [51, 315, 264] only consider “things” to be salient.

5.3.4 Iterative ground truth approximation

The ground truth approximated in Sec. 5.3.2 and 5.3.3 can be used to train a network from
random initialisation. However, the ground truth can subsequently be iteratively refined
by using the outputs of the network on the training set as the new approximate ground
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Detector

Semantic 

Subnetwork

Instance 

Subnetwork

Figure 5.5: Overview of the network architecture. An initial semantic segmentation is
partitioned into an instance segmentation, using the output of an object detector as a cue.
Dashed lines indicate paths which are not backpropagated through during training.

truth as shown in Fig 5.4. The network’s output is also post-processed with DenseCRF [154]
using the parameters of Deeplab [44] (as also done by [151, 139]) to improve the predictions
at boundaries. Moreover, any pixel labelled a “thing” class that is outside the bounding-box
of the “thing” class is set to “ignore” as we are certain that a pixel for a thing class cannot be
outside its bounding box. For a dataset such as Pascal VOC, we can set these pixels to be
“background” rather than “ignore”. This is because “background” is the only “stuff” class
in the dataset.

5.3.5 Network Architecture

Using the approximate ground truth generation method described in this section, we can
train a variety of segmentation models. Moreover, we can trivially combine this with full
human-annotations to operate in a semi-supervised setting. We use the architecture of
Arnab et al. [9] as it produces both semantic- and instance-segmentations, and can be trained
end-to-end, given object detections. This network consists of a semantic segmentation
subnetwork, followed by an instance subnetwork which partitions the initial semantic
segmentation into an instance segmentation with the aid of object detections, as shown in
Fig. 5.5.

We denote the output of the first module, which can be any semantic segmentation
network, asQwhereQi(l) is the probability of pixel i of being assigned semantic label l. The
instance subnetwork has two inputs – Q and a set of object detections for the image. There
are D detections, each of the form (ld, sd, Bd) where ld is the detected class label, sd ∈ [0, 1]

the score and Bd the set of pixels lying within the bounding box of the dth detection. This
model assumes that each object detection represents a possible instance, and it assigns every
pixel in the initial semantic segmentation an instance label using a Conditional Random
Field (CRF). This is done by defining a multinomial random variable, Xi, at each of the N
pixels in the image, with X = [X1, X2 . . . , XN ]>. This variable takes on a label from the set
{1, . . . , D}where D is the number of detections. This formulation ensures that each pixel
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can only be assigned one label. The energy of the assignment x to all instance variablesX is
then defined as

E(x) = −
N∑
i

ln (w1ψBox(xi) + w2ψGlobal(xi) + ε) +

N∑
i<j

ψPairwise(xi, xj). (5.2)

The first unary term, the box term, encourages a pixel to be assigned to the instance
represented by a detection if it falls within its bounding box,

ψBox(Xi = k) =

{
skQi(lk) if i ∈ Bk
0 otherwise.

(5.3)

Note that this term is robust to false-positive detections [9] since it is low if the semantic
segmentation at pixel i, Qi(lk) does not agree with the detected label, lk. The global term,

ψGlobal(Xi = k) = Qi(lk), (5.4)

is independent of bounding boxes and can thus overcome errors in mislocalised bounding
boxes not covering the whole instance. Finally, the pairwise term is the common densely-
connected Gaussian and bilateral filter [154] encouraging appearance and spatial consistency.

In contrast to [9], we also consider stuff classes (which object detectors are not trained
for), by simply adding “dummy” detections covering the whole image with a score of 1
for all stuff classes in the dataset. This allows our network to jointly segment all “things”
and “stuff” classes at an instance level. As mentioned before, the box and global unary
terms are not affected by false-positive detections arising from detections for classes that do
not correspond to the initial semantic segmentationQ. The Maximum-a-Posteriori (MAP)
estimate of the CRF is the final labelling, and this is obtained by using mean-field inference,
which is formulated as a differentiable, recurrent network [329, 6].

We first train the semantic segmentation subnetwork using a standard cross-entropy loss
with the approximate ground truth described in Sec 5.3.2 and 5.3.3. Thereafter, we append
the instance subnetwork and finetune the entire network end-to-end. For the instance
subnetwork, the loss function must take into account that different permutations of the
same instance labelling are equivalent. As a result, the ground truth is “matched” to the
prediction before the cross-entropy loss is computed as described in [9].

5.4 Experimental Evaluation

5.4.1 Experimental Set-up

Datasets and weak supervision We evaluate on two standard segmentation datasets,
Pascal VOC [81] and Cityscapes [57]. Our weakly- and fully-supervised experiments
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are trained with the same images, but in the former case, pixel-level ground truth is
approximated as described in Sec. 5.3.1 through 5.3.4.

Pascal VOChas 20 “thing” classes annotated, forwhichwe use bounding box supervision.
There is a single “background” class for all other object classes. Following common practice
on this dataset, we utilise additional images from the SBD dataset [110] to obtain a training
set of 10582 images. In some of our experiments, we also use 54000 images from Microsoft
COCO [180] only for the initial pretraining of the semantic subnetwork. We evaluate on
the validation set, of 1449 images, as the evaluation server is not available for instance
segmentation.

Cityscapes has 8 “thing” classes, for which we use bounding box annotations, and
11 “stuff” class labels for which we use image-level tags. We train our initial semantic
segmentation model with the images for which 19998 coarse and 2975 fine annotations are
available. Thereafter, we train our instance segmentation network using the 2975 images
with fine annotations available as these have instance ground truth labelled. Details of the
multi-label classification network we trained in order to obtain weak localisation cues from
image-level tags (Sec. 5.3.3) are described in the supplementary. When using Grad-CAM,
the original authors originally used a threshold of 15% of the maximum value for weak
localisation on ImageNet. However, we increased the threshold to 50% to obtain higher
precision on this more cluttered dataset.

Network training Our underlying segmentation network is a reimplementation of PSP-
Net [328]. For fair comparison to our weakly-supervised model, we train a fully-supervised
model ourselves, using the same training hyperparameters (detailed in the supplementary)
instead of using the authors’ public, fully-supervised model. The original PSPNet imple-
mentation [328] used a large batch size synchronised over 16 GPUs, as larger batch sizes
give better estimates of batch statistics used for batch normalisation [328, 45]. In contrast,
our experiments are performed on a single GPU with a batch size of one 521× 521 image
crop. As a small batch size gives noisy estimates of batch statistics, our batch statistics are
“frozen” to the values from the ImageNet-pretrained model as common practice [43, 129].
Our instance subnetwork requires object detections, and we train Faster-RCNN [243] for
this task. All our networks use a ResNet-101 [117] backbone.

Evaluation Metrics We use the AP r metric [112], commonly used in evaluating instance
segmentation. It extends the AP , a ranking metric used in object detection [81], to
segmentation where a predicted instance is considered correct if its Intersection over Union
(IoU) with the ground truth instance is more than a certain threshold. We also report the
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Table 5.1: Comparison of semantic segmentation performance to recent methods using
only weak, bounding-box supervision on Pascal VOC. Note that [63] and [221] use the less
accurate VGG network, whilst we and [139] use ResNet-101. “FS%” denotes the percentage
of fully-supervised performance.

Method Validation set Test set
IoU

(weak)
IoU (full) FS% IoU

(weak)
IoU (full) FS%

Without COCO annotations
BoxSup [63] 62.0 63.8 97.2 64.6 – –
Deeplab WSSL [221] 60.6 67.6 89.6 62.2 70.3 88.5
SDI [139] 69.4 74.5 93.2 – – –
Ours 74.3 77.3 96.1 75.5 78.6 96.3

With COCO annotations
SDI [139] 74.2 77.7 95.5 – – –
Ours 75.7 79.0 95.8 76.7 79.4 96.6

AP rvol which is the mean AP r across a range of IoU thresholds. Following the literature, we
use a range of 0.1 to 0.9 in increments of 0.1 on VOC, and 0.5 to 0.95 in increments of 0.05

on Cityscapes.
However, as noted by several authors [317, 9, 15, 142], the AP r is a ranking metric that

does not penalise methods which predict more instances than there actually are in the image
as long as they are ranked correctly. Moreover, as it considers each instance independently,
it does not penalise overlapping instances. As a result, we also report the Panoptic Quality
(PQ) recently proposed by [142],

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

× |TP |
|TP |+ 1

2 |FP |+
1
2 |FN |︸ ︷︷ ︸

Detection Quality (DQ)

, (5.5)

where p and g are the predicted and ground truth segments, andTP ,FP andFN respectively
denote the set of true positives, false positives and false negatives.

5.4.2 Results on Pascal VOC

Tables 5.1 and 5.2 show the state-of-art results of our method for semantic- and instance-
segmentation respectively. For both semantic- and instance-segmentation, our weakly
supervised model obtains about 95% of the performance of its fully-supervised counterpart,
emphasising that accurate models can be learned from only bounding box annotations,
which are significantly quicker and cheaper to obtain than pixelwise annotations. Table 5.2
also shows that our weakly-supervised model outperforms some recent fully supervised
instance segmentation methods such as [8] and [175]. Moreover, our fully-supervised
instance segmentation model outperforms all previous work on this dataset. The main
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Table 5.2: Comparison of instance segmentation performance to recent (fully- and weakly-
supervised) methods on the VOC 2012 validation set.

Method AP r
AP rvol PQ0.5 0.6 0.7 0.8 0.9

Weakly supervised without COCO
SDI [139] 44.8 – – – – – –
Ours 60.5 55.2 47.8 37.6 21.6 55.6 59.0

Fully supervised without COCO
SDS [112] 43.8 34.5 21.3 8.7 0.9 – –
Chen et al. [50] 46.3 38.2 27.0 13.5 2.6 – –
PFN [175] 58.7 51.3 42.5 31.2 15.7 52.3 –
Ours (fully supervised) 63.6 59.5 53.8 44.7 30.2 59.2 62.7
Weakly supervised with COCO
SDI [139] 46.4 – – – – – –
Ours 60.9 55.9 48.0 37.2 21.7 55.5 59.5

Fully supervised with COCO
Arnab et al. [8] 58.3 52.4 45.4 34.9 20.1 53.1 –
MPA [184] 62.1 56.6 47.4 36.1 18.5 56.5 –
Arnab et al. [9] 61.7 55.5 48.6 39.5 25.1 57.5 –
SGN [182] 61.4 55.9 49.9 42.1 26.9 – –
Ours (fully supervised) 63.9 59.3 54.3 45.4 30.2 59.5 63.1

difference of our model to [9] is that our network is based on the PSPNet architecture using
ResNet-101, whilst [9] used the network of [7] based on VGG [267].

We can obtain semantic segmentations from the output of our semantic subnetwork, or
from the final instance segmentation (as we produce non-overlapping instances) by taking
the union of all instances which have the same semantic label. We find that the IoU obtained
from the final instance segmentation, and the initial pretrained semantic subnetwork to be
very similar, and report the latter in Tab. 5.1. Further qualitative and quantitative results,
including success and failure cases, are included in the supplement.

End-to-end training of instance subnetwork Our instance subnetwork can be trained
in a piecewise fashion, or the entire network including the semantic subnetwork can be
trained end-to-end. End-to-end training was shown to obtain higher performance by [9]
for full supervision. We also observe this effect for weak supervision from bounding box
annotations. A weakly supervised model, trained with COCO annotations improves from
an AP rvol of 53.3 to 55.5. When not using COCO for training the initial semantic subnetwork,
a slightly higher increase by 3.9 from 51.7 is observed. This emphasises that our training
strategy (Sec. 5.3.1) is effective for both semantic- and instance-segmentation.
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Table 5.3: Semantic- and instance-
segmentation performance on Pascal VOC
with varying levels of supervision from the
Pascal and COCO datasets. The former is
measured by the IoU, and latter by theAP rvol
and PQ.

Dataset IoU AP rvol PQVOC COCO

Weak Weak 75.7 55.5 59.5
Weak Full 75.8 56.1 59.8
Full Weak 77.5 58.9 62.7
Full Full 79.0 59.5 63.1

Table 5.4: Semantic segmentation perfor-
mance on the Cityscapes validation set. We
usemore informative, bounding-box annota-
tions for “thing” classes, and this is evident
from the higher IoU than on “stuff” classes
for which we only have image-level tags.

Method IoU
(weak)

IoU
(full)

FS%

Ours (thing classes) 68.2 70.4 96.9
Ours (stuff classes) 60.2 72.4 83.1
Ours (overall) 63.6 71.6 88.8

Iterative training The approximate ground truth used to train our model can also be
generated in an iterative manner, as discussed in Sec. 5.3.4. However, as the results from a
single iteration (Tab. 5.1 and 5.2) are already very close to fully-supervised performance,
this offers negligible benefit. Iterative training is, however, crucial for obtaining good results
on Cityscapes as discussed in Sec. 5.4.3.

Semi-Supervision We also consider the case where we have a combination of weak
and full annotations. As shown in Tab. 5.3, we consider all combinations of weak- and
full-supervision of the training data from Pascal VOC and COCO. Table 5.3 shows that
training with fully-supervised data from COCO and weakly-supervised data from VOC
performs about the same as weak supervision from both datasets for both semantic- and
instance-segmentation. Furthermore, training with fully annotated VOC data and weakly
labelled COCO data obtains similar results to full supervision from both datasets. We have
qualitatively observed that the annotations in Pascal VOC are of higher quality than those
of Microsoft COCO (random samples from both datasets are shown in the supplementary).
And this intuition is evident in the fact that there is not much difference between training
with weak or full annotations from COCO. This suggests that in the case of segmentation,
per-pixel labelling of additional images is not particularly useful if they are not labelled
to a high standard, and that labelling fewer images at a higher quality (Pascal VOC) is
more beneficial than labelling many images at a lower quality (COCO). This is because
Tab. 5.3 demonstrates how both semantic- and instance-segmentation networks can be
trained to achieve similar performance by using only bounding box labels instead of low-
quality segmentation masks. The average annotation time can be considered a proxy for
segmentation quality. While a COCO instance took an average of 79 seconds to segment
[180], this figure is not mentioned for Pascal VOC [81, 80].
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Table 5.5: Instance-level segmentation results on Cityscapes. On the validation set, we
report results for both “thing” (th.) and “stuff” (st.) classes. The online server, which
evaluates the test set, only computes the AP r for “thing” classes. We compare to other
fully-supervised methods which produce non-overlapping instances. To our knowledge, no
published work has evaluated on both “thing” and “stuff” classes. Our fully supervised
model, initialised from the public PSPNet model [328] is equivalent to our previous work [9],
and competitive with the state-of-art. Note that we cannot use the public PSPNet pretrained
model in a weakly-supervised setting.

Validation Test
AP rvol PQ IoU AP rvol

Method th. st. all th. st. all th. st. all th.

Ours (weak, ImageNet init.) 17.0 33.1 26.3 35.8 43.9 40.5 68.2 60.2 63.6 12.8
Ours (full, ImageNet init.) 24.3 42.6 34.9 39.6 52.9 47.3 70.4 72.4 71.6 18.8

Ours (full, PSPNet init.) [9] 28.6 52.6 42.5 42.5 62.1 53.8 80.1 79.5 79.8 23.4

Pixel Encoding [287] 9.9 – – – – – – – – 8.9
RecAttend [242] – – – – – – – – – 9.5
InstanceCut [143] – – – – – – – – – 13.0
DWT [15] 21.2 – – – – – – – – 19.4
SGN [182] 29.2 – – – – – – – – 25.0

5.4.3 Results on Cityscapes

Tables 5.4 and 5.5 present, what to our knowledge is, the first weakly supervised results for
either semantic or instance segmentation on Cityscapes. Table 5.4 shows that, as expected
for semantic segmentation, our weakly supervised model performs better, relative to the
fully-supervised model, for “thing” classes compared to “stuff” classes. This is because
we have more informative bounding box labels for “things”, compared to only image-level
tags for “stuff”. For semantic segmentation, we obtain about 97% of fully-supervised
performance for “things” (similar to our results on Pascal VOC) and 83% for “stuff”. Note
that we evaluate images at a single-scale, and higher absolute scores could be obtained by
multi-scale ensembling [328, 43].

For instance-level segmentation, the fully-supervised ratios for the PQ are similar to the
IoU ratio for semantic segmentation. In Tab. 5.5, we report the AP rvol and PQ for both thing
and stuff classes, assuming that there is only one instance of a “stuff” class in the image if it
is present. Here, theAP rvol for “stuff” classes is higher than that for “things”. This is because
there can only be one instance of a “stuff” class, which makes instances easier to detect,
particularly for classes such as “road” which typically occupy a large portion of the image.
The Cityscapes evaluation server, and previous work on this dataset, only report the AP rvol
for “thing” classes. As a result, we report results for “stuff” classes only on the validation
set. Table 5.5 also compares our results to existing work which produces non-overlapping
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Figure 5.6: Iteratively refining our approximate ground truth during training improves both
semantic and instance segmentation on the Cityscapes validation set.

instances on this dataset, and shows that both our fully- and weakly-supervised models
are competitive with recently published work on this dataset. We also include the results
of our fully-supervised model, initialised from the public PSPNet model [328] released by
the authors, and show that this is competitive with the state-of-art [182] among methods
producing non-overlapping segmentations (note that [182] also uses the same PSPNet
model). Further quantitative and qualitative results are in the supplementary.

Iterative training Iteratively refining our approximate ground truth during training, as
described in Sec. 5.3.4, greatly improves our performance on both semantic- and instance-
segmentation as shown in Fig. 5.6. We trained the network for 150 000 iterations before
regenerating the approximate ground truth using the network’s own output on the training
set. Unlike on Pascal VOC, iterative training is necessary to obtain good performance on
Cityscapes as the approximate ground truth generated on the first iteration is not sufficient
to obtain high accuracy. This was expected for “stuff” classes, since we began from weak
localisation cues derived from the image-level tags. However, as shown in Fig. 5.6, “thing”
classes also improved substantially with iterative training, unlike on Pascal VOC where
there was no difference. Compared to VOC, Cityscapes is a more cluttered dataset, and has
large scale variations as the distance of an object from the car-mounted camera changes.
These dataset differences may explain why the image priors employed by the methods
we used (GrabCut [252] and MCG [5]) to obtain approximate ground truth annotations
from bounding boxes are less effective. Furthermore, in contrast to Pascal VOC, Cityscapes
has frequent co-occurences of the same objects in many different images, making it more
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Table 5.6: The effect of different instance ranking methods on the AP rvol of our weakly
supervised model computed on the Cityscapes validation set.

Ranking Method AP rvol th. AP rvol st. PQ all

Detection score 17.0 26.7 40.5
Mean seg. confidence 14.6 33.1 40.5
Oracle 21.6 37.0 40.5

challenging for weakly supervised methods.

Effect of ranking methods on the AP r The AP r metric is a ranking metric derived from
object detection. It thus requires predicted instances to be scored such that they are ranked
in the correct relative order. As our network uses object detections as an additional input and
each detection represents a possible instance, we set the score of a predicted instance to be
equal to the object detection score. For the case of stuff classes, which object detectors are not
trained for, we use a constant detection score of 1 as described in Sec. 5.3.5. An alternative
to using a constant score for “stuff” classes is to take the mean of the softmax-probability of
all pixels within the segmentation mask. Table 5.6 shows that this latter method improves
the AP r for stuff classes. For “things”, ranking with the detection score performs better
and comes closer to oracle performance which is the maximum AP r that could be obtained
with the predicted instances.

Changing the score of a segmented instance does not change the quality of the actual
segmentation, but does impact the AP r greatly as shown in Tab. 5.6. The PQ, which does
not use scores, is unaffected by different ranking methods, and this suggests that it is a
better metric for evaluating non-overlapping instance segmentation where each pixel in the
image is explained.

5.5 Conclusion and Future Work

We have presented, to our knowledge, the first weakly-supervised method that jointly
produces non-overlapping instance and semantic segmentation for both “thing” and “stuff”
classes. Using only bounding boxes, we are able to achieve 95% of state-of-art fully-
supervised performance on Pascal VOC. On Cityscapes, we use image-level annotations for
“stuff” classes and obtain 88.8% of fully-supervised performance for semantic segmentation
and 85.6% for instance segmentation (measured with the PQ). Crucially, the weak anno-
tations we use incur only about 3% of the time of full labelling. As annotating pixel-level
segmentation is time consuming, there is a dilemma between labelling few images with
high quality or many images with low quality. Our semi-supervised experiment suggests
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that the latter is not an effective use of annotation budgets as similar performance can be
obtained from only bounding-box annotations.

Future work is to perform instance segmentation using only image-level tags and the
number of instances of each object present in the image as supervision. This will require a
network architecture that does not use object detections as an additional input.
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Appendices

Section 5.A presents further qualitative and quantitative results of our experiments on
Cityscapes and Pascal VOC. Section 5.B describes the training of the networks described in
the main paper. Section 5.4.2 mentioned that the annotation quality of Pascal VOC [81] is
better than COCO [180]. Some randomly drawn images from these datasets are presented
to illustrate this point in Sec. 5.C. Finally, Sec. 5.D shows our calculation of how much
the overall annotation time is reduced by using weak annotations, in comparison to full
annotations, on the Cityscapes dataset.

5.A Additional Qualitative and Quantitative Results

Figure 5.7 and Tab. 5.7 present additional qualitative and quantitative results on the
Cityscapes dataset. Similarly, Fig. 5.8 and Tab. 5.8 show additional results on the Pascal
VOC dataset.
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Input image Weakly-supervised model Fully-supervised model

Figure 5.7: Comparison of our weakly- and fully-supervised instance segmentation models
on theCityscapes dataset. The fully-supervisedmodel producesmore precise segmentations,
as seen by its sharper boundaries. The last row also shows how the fully-supervised model
segments “stuff” classes such as “vegetation” and “sidewalk” more accurately. Both of these
were expected, as the weakly-supervised model is trained only with bounding box and
image tag annotations. Rows 3 and 6 also show some instances with different colouring.
Each colour represents an instance ID, and a discrepancy between the two indicates that a
different number of instances were segmented.
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Input image Weakly-supervised model Fully-supervised model

This inserts some vspace
Figure 5.7 continued. Comparisonof ourweakly- and fully-supervised instance segmentation
models on the Cityscapes dataset. The last three rows show how the fully-supervised model
is also able to segment “stuff” classes such as “sidewalk” more accurately. This was expected
since the weakly-supervised model is only trained with image-level tags for “stuff” classes,
which provides very little localisation information.
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Input image Weakly-supervised model Fully-supervised model

Figure 5.8: Comparison of our weakly- and fully-supervised instance segmentation models
on the Pascal VOC validation set. The weakly-supervised model typically obtains results
similar to its state-of-the-art, fully-supervised counterpart. However, the fully-supervised
model produces more accurate and precise segmentations, as seen in the last two rows.
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Input image Weakly-supervised model Fully-supervised model

Figure 5.8 continued. The first and second rows show examples where the results of the
two models are similar. In the third and fourth rows, the weakly-supervised model does
not segment the “green person” as well as the fully-supervised model. In the last row, both
weakly- and fully-supervised models have made an error in not completely segmenting
each of the bottles. 106



5.A. Additional Qualitative and Quantitative Results
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5. Weakly- and Semi-Supervised Panoptic Segmentation

5.B Experimental Details

5.B.1 Network architecture and training

The underlying semantic segmentation network is a reimplementation of PSPNet [328] as
described in Sec. 5.3.5, using a ResNet-101 backbone. This network has an output stride of 8,
meaning that the result of the network has to be upsampled by a factor of 8 to obtain the
final prediction at the original resolution.

We used most of the same training hyperparameters for training both our fully- and
weakly-supervised networks. A batch size of a single 521× 521 image crop, momentum of
0.9, and a weight decay of 5× 10−4 were used in all our experiments.

We trained the semantic segmentation module first, and finetuned the entire instance
segmentation network afterwards. For training the semantic segmentation module, the
fully supervised models were trained with an initial learning rate of 1× 10−4, which was
then reduced to 1 × 10−5 when the training loss converged. We used the same learning
rate schedule for our weakly-supervised model on Pascal VOC where we did not do any
iterative training. In total, about 400k iterations of training were performed. When training
our weakly-supervised model iteratively on Cityscapes, we used an initial learning rate of
1× 10−4 which was then halved for each subsequent stage of iterative training. Each of these
iterative training stages were 150k iterations long. Both of the weakly- and fully-supervised
models were initialisedwith ImageNet-pretrainedweights and batch normalisation statistics.

In the instance training stage, we fixed the learning rate to 1× 10−5 for both weakly- and
fully-supervised experiments on the VOC and Cityscapes datasets. We observed that a total
of 400k iterations were required for the models’ training losses to converge.

When training the Faster-RCNN object detector [243], we used all the default training
hyperparameters in the publicly available code.

5.B.2 Multi-label classification network

We obtained weak localisation cues, as described in Sec. 5.3.3 of the main paper, by first
training a network to perform multi-label classification on the Cityscapes dataset.

We adapted the same PSPNet [328] architecture for segmentation for the classification
task: The output of the last convolutional layer (conv5_4) is followed by a global average
pooling layer to aggregate all the spatial information. Thereafter, a fully-connected layer
with 19 outputs (the number of classes in the Cityscapes dataset) is appended. This network
was then trained with a binary cross entropy loss for each of the 19 labels in the dataset.
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5.C. Comparison of Pascal VOC and Microsoft COCO annotation quality

The loss for a single image is

L =
1

N

N∑
i=1

−yi log(sigmoid(zi))− (1− yi) log(1− sigmoid(zi)), (5.6)

where y is the ground truth image-level label vector and yi = 1 if the ith class is present in
the image and 0 otherwise. zi is the logit for the ith class output by the final fully-connected
layer in the network.

It is not possible to fit an entire 2048 × 1024 Cityscapes image in memory to perform
multi-label classification. Using the PSPNet architecture described above (with an output
stride of 8), it would take 48.8 GB of memory to train a network with a batch size of 1.
Even the standard ResNet-101 architecture [117] (which has a higher output stride of 32,
and thus sixteen times less spatial resolution) would take 21.7 GB of memory, which is
still almost double the 12GB available in our Titan X GPU. Consequently, we took 15 fixed
crops of size 500× 400 from the original 2048× 1024 image and trained with these crops
instead. We were careful not to take random crops during training, as this could be a form
of extra supervision. Instead, as we took 15 fixed crops which tile the image and derived
image-level labels from them, it effectively means that in a real-world scenario annotators
would be asked to annotate image-level labels for fifteen 500 × 400 images rather than a
single 2048× 1024 image.

This multi-label classification network was trained with a batch size of 1 and a fixed
learning rate of 1× 10−4 until the training loss converged. We found that this occurred after
50k iterations of training. At this point, the mean Average Precision (mAP) on the validation
set was 78.8. The mAP is also used by the Pascal VOC dataset to benchmark multi-label
classification [81].

5.C Comparison of Pascal VOC and Microsoft COCO annotation
quality

Section 5.4.2 mentioned that images in Pascal VOC [81] are annotated at a higher quality
than those in Microsoft COCO [180]. Figure 5.9 illustrates this observation. Images were
randomly drawn from Microsoft COCO, and then images from Pascal VOC with the same
semantic classes present are shown alongside for comparison. The polygons used to annotate
the objects in COCO are evident, and the annotations at the boundaries of objects are often
incorrect.
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5. Weakly- and Semi-Supervised Panoptic Segmentation

5.D Calculation of reduction factor in annotation time if only
weak labels are used

The Cityscapes dataset has 11 “stuff” classes, and 8 “thing” classes annotated. Over the
training and validation sets, there are an average of 17.9 instances of “thing” classes per
full-resolution, 2048× 1024 image.

For the calculation in Sec. 5.1, we assumed that each instance of a “thing” class is labelled
with a bounding box, and that image-level tags are annotated for all present “stuff” classes.
We assumed that a bounding box takes 7 seconds per instance to draw [220] and that an
image-level tag takes 1 second to label [219].

Therefore the average time to annotate “thing” classes with a bounding-box is 17.9× 7 =

125.3 seconds. As we took 15 fixed crops per image (as described in Sec. 5.B.2) and there
are an average of 3.8 “stuff” tags per crop, the average time to annotate stuff classes is
15 × 3.8 = 57 seconds. This totals 182.3 seconds = 3.0 minutes per image. Thus the
annotation time is reduced by a factor of 29.6 (since the images originally required 90
minutes to label at a pixel-level by hand [57]) if weak annotations in the form of bounding
boxes and image-level tags are used.
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5.D. Calculation of reduction factor in annotation time if only weak labels are used

COCO Image COCO Label Pascal VOC Image Pascal VOC Label

Figure 5.9: Comparison of the annotation quality of images in the Microsoft COCO and
Pascal VOC datasets. An image was randomly drawn from COCO, and an image from
Pascal VOC with similar content is shown alongside it. The polygons used to annotate the
objects in COCO are evident, and the annotations at the boundaries of objects are often
incorrect. Grey regions in the Pascal images indicate “void” regions where the annotator
was unsure of the correct label.
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5. Weakly- and Semi-Supervised Panoptic Segmentation

COCO Image COCO Label Pascal VOC Image Pascal VOC Label

Figure 5.9 continued. Comparison of the annotation quality of images in the Microsoft
COCO and Pascal VOC datasets. An image was randomly drawn from COCO, and an image
from Pascal VOC with similar content is shown alongside it. The polygons used to annotate
the objects in COCO are evident, and the annotations at the boundaries of objects are often
incorrect. Grey regions in the Pascal images indicate “void” regions where the annotator
was unsure of the correct label.
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Chapter 6

On the Robustness of Semantic
Segmentation Models to Adversarial
Attacks

Deep Neural Networks (DNNs) have demonstrated exceptional performance on most
recognition tasks such as image classification and segmentation. However, they have
also been shown to be vulnerable to adversarial examples. This phenomenon has recently
attracted a lot of attention but it has not been extensively studied on multiple, large-scale
datasets and structured prediction tasks such as semantic segmentation which often require
more specialised networks with additional components such as CRFs, dilated convolutions,
skip-connections and multiscale processing.

In this paper, we present what to our knowledge is the first rigorous evaluation of
adversarial attacks onmodern semantic segmentationmodels, using two large-scale datasets.
We analyse the effect of different network architectures, model capacity and multiscale
processing, and show that many observations made on the task of classification do not always
transfer to this more complex task. Furthermore, we show how mean-field inference in
deep structured models, multiscale processing (and more generally, input transformations)
naturally implement recently proposed adversarial defenses. Our observations will aid
future efforts in understanding and defending against adversarial examples. Moreover,
in the shorter term, we show how to effectively benchmark robustness and show which
segmentation models should currently be preferred in safety-critical applications due to
their inherent robustness.

6.1 Introduction

Computer vision has progressed to the point where Deep Neural Network (DNN) models
for most recognition tasks such as classification or segmentation have become a widely
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6. On the Robustness of Semantic Segmentation Models to Adversarial Attacks

(a) Input image (perturbed half on right) (b) Ground Truth (c) PSPNet [328]

(d) DilatedNet [319] (e) ICNet [327] (f) CRF-RNN [329]

Figure 6.1: The left hand side shows the original image, and the right the output when
modifiedwith imperceptible adversarial perturbations. There is a large variance in how each
network’s performance is degraded, even though the perturbations are created individually
for each network with the same `∞ norm of 4. We rigorously analyse a diverse range
of state-of-the-art segmentation networks, observing how architectural properties, such
as residual connections, multiscale processing and CRFs, and input transformations, all
influence adversarial robustness. These observations will help future efforts to understand
and defend against adversarial examples, whilst in the short term they suggest which
networks should currently be preferred in safety-critical applications.

available commodity. State-of-the-art performance on various datasets has increased at an
unprecedented pace, and as a result, these models are now being deployed in more and
more complex systems. However, despite DNNs performing exceptionally well in absolute
performance scores, they have also been shown to be vulnerable to adversarial examples –
images which are classified incorrectly (often with high confidence), although there is only
a minimal perceptual difference with correctly classified inputs [68, 23, 278].

This raises doubts aboutDNNsbeingused in safety-critical applications such as driverless
vehicles [132] or medical diagnosis [79] since the networks could inexplicably classify a
natural input incorrectly although it is almost identical to examples it has classified correctly
before (Fig. 6.1). Moreover, it allows for the possibility of malicious agents attacking systems
that use neural networks [160, 222, 259, 82]. Hence, the robustness of networks perturbed
by adversarial noise may be as important as the predictive accuracy on clean inputs. And if
multiple models achieve comparable performance, we should always consider deploying the
one which is inherently most robust to adversarial examples in (safety-critical) production
settings.

This phenomenon has recently attracted a lot of attention and numerous strategies have
been proposed to train DNNs to be more robust to adversarial examples [104, 161, 225, 196].
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6.1. Introduction

However, these defenses are not universal; they have frequently been found to be vulnerable
to other types of attacks [36, 35, 34, 119] and/or come at the cost of performance penalties
on clean inputs [39, 106, 196]. To the best of our knowledge, adversarial examples have not
been extensively analysed beyond standard image classification models, and often on small
datasets such as MNIST or CIFAR-10 [196, 106, 225]. Hence, the vulnerability of modern
DNNs to adversarial attacks on more complex tasks such as semantic segmentation in the
context of real-world datasets covering different domains remains unclear.

In this paper, we present what to our knowledge is the first rigorous evaluation of the
robustness of semantic segmentation models to adversarial attacks. We focus on semantic
segmentation, since it is a significantly more complex task than image classification [19].
This has also been witnessed by the fact that state-of-the-art semantic segmentation models
are typically based on standard image classification architectures [157, 267, 117], extended
by additional components such as dilated convolutions [44, 319], specialised pooling [43,
328], skip-connections [189], Conditional Random Fields (CRFs) [329, 8] and/or multiscale
processing [43, 40] whose impact on the robustness has never been thoroughly studied.

First, we analyse the robustness of various DNN architectures to adversarial examples
and show that the Deeplab v2 network [43] is significantly more robust than approaches
which achieve better prediction scores on public benchmarks [328]. Thereafter, we show
that adversarial examples are less effective when processed at different scales. Furthermore,
multiscale networks are more robust to multiple different attacks and white-box attacks
on them produce more transferable perturbations. Inspired by the effect of multiscale
processing, we examine other input transformations which neural networks are not invariant
to and show that they are markedly more robust to transformed adversarial examples.
However, we also show that this is true only when the attack generation process does not
take knowledge of these input transformations into account; otherwise, the robustness
improvements are rather marginal. These observations have important implications on
producing effective physical adversarial examples in the real world. On a separate track,
we also show that structured prediction models have a similar effect as “gradient-masking”
defense strategies [223, 225]. As such, mean field CRF inference increases robustness to
untargeted adversarial attacks, but in contrast to the gradient masking defense, it also
improves the network’s predictive accuracy. Another of our contributions shows that some
widely accepted observations about robustness and model size or iterative attacks, which
were made in the context of image classification [161, 196] do not transfer to semantic
segmentation and different, real-world datasets. Moreover, we also show that proposed
adversarial defenses should be evaluated prudently by using knowledge of the defense
mechanism in the white-box attack to test it, which was not done in previously [107, 308,
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6. On the Robustness of Semantic Segmentation Models to Adversarial Attacks

176, 55]. Finally, in contrast to the prior art [161, 187], our experiments are carried out on
two large-scale, real-world datasets and (most of) our observations remained consistent
across them.

We believe our findings will facilitate future efforts in understanding and defending
against adversarial examples without compromising predictive accuracy.

6.2 Adversarial Examples

Adversarial perturbations cause a classifier to change its original prediction, when added to
the original input x. For a classifier f parametrised by θ that maps x ∈ Rm to y, a target
class from C = {1, 2, . . . , C}, a targeted adversarial attack causes the classifier to predict yt
instead, where yt is chosen by the attacker and yt 6= y. An untargeted adversarial attack
causes the classifier to predict any label besides the original prediction (from the label set
C \ {y}).

This phenomenon was initially studied in the context of malware detection and spam
classification [23, 68], and has recently become popular in the context of computer vision.
Szegedy et al. [278] defined an adversarial perturbation r as the solution to the optimisation
problem defining a targeted attack

arg min ‖r‖2 subject to f(x + r; θ) = yt, (6.1)

where yt is the target label of the adversarial example xadv = x+ r. For clarity of exposition,
we consider only a single label y. This naturally generalises to the case of semantic
segmentation where networks are trained with an independent cross-entropy loss at each
pixel.

Constraining the neural network to output y is difficult to optimise. Hence, [278] added
an additional term to the objective based on the loss function used to train the network

arg min
r

λ ‖r‖2 + L(f(x + r; θ), yt). (6.2)

Here, L is the loss function between the network prediction and desired target, and λ

is a positive scalar. Szegedy et al. [278] solved this using L-BFGS, and [36] and [54]
have proposed further advances using surrogate loss functions. However, this method is
computationally very expensive as it requires several minutes to produce a single attack.
Hence, the following methods are used in practice:

Fast Gradient Sign Method (FGSM) [104]. FGSM produces adversarial examples by
increasing the loss (usually the cross-entropy) of the network on the input x as

xadv = x + ε · sign(∇xL(f(x; θ), y)). (6.3)
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6.3. Adversarial Defenses and Evaluations

This is a single-step, untargeted attack, which approximately minimises the `∞ norm of the
perturbation bounded by the parameter ε.

FGSM ll [161]. This single-step attack encourages the network to classify the adversarial
example as yt by assigning

xadv = x− ε · sign(∇xL(f(x; θ), yt)). (6.4)

We follow the convention of choosing the target class as the least likely class predicted by
the network [161].

Iterative FGSM [161, 196]. This attack extends FGSM by applying it in an iterative
manner, which increases the chance of fooling the original network. Using the subscript to
denote the iteration number, this can be written as

xadv0 = x (6.5)

xadvt+1 = clip(xadvt + α · sign(∇xadv
t
L(f(xadvt ; θ), y)), ε)

The clip(a, ε) function makes sure that each element ai of a is in the range [ai − ε, ai + ε].
This ensures that the max-norm constraint of each component of the perturbation r, being
no greater than ε is maintained. It thus corresponds to projected gradient descent [196],
with step-size α, into an `∞ ball of radius ε around the input x.

Iterative FGSM ll [161]. This is a stronger version of FGSM ll. This attack sets the target
to be the least likely class predicted by the network, yll, in each iteration

xadvt+1 = clip(xadvt − α · sign(∇xadv
t
L(f(xadvt ; θ), yll)), ε). (6.6)

The aforementioned attacks were all proposed in the context of image classification,
but they have been adapted to the problems of semantic segmentation [90, 54], object
detection [309] and visual question answering [314]. Similar, gradient-based attacks have
also been proposed to minimise the `2 norm of the adversarial perturbation, r, [206, 36],
and also to attack other classification algorithms such as SVMs [23]. Methods to optimise
the non-differentiable `0 norm of the perturbation have also been proposed [273, 224, 213].

6.3 Adversarial Defenses and Evaluations

Liu et al. [187] have thoroughly evaluated the transferability of adversarial examples
generated on one network and tested on another unknown model, i.e. only as “black-box”
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6. On the Robustness of Semantic Segmentation Models to Adversarial Attacks

attacks [278, 223, 201, 205]. Kurakin et al. [161], contrastingly, studied the adversarial training
defense, which generates adversarial examples online and adds them into the training set
[104, 196, 284]. They found that training with adversarial examples generated by single-step
methods conferred robustness to other single-step attacks with negligible performance
difference to normally trained networks on clean inputs. However, the adversarially trained
network was still as vulnerable to iterative attacks as standard models. Madry et al. [196],
conversely, found robustness to iterative attacks by adversarial training with them. However,
this was only on the small MNIST dataset. The defense was not effective on CIFAR-10,
underlining the importance of testing onmultiple datasets. Tramer et al. [284] also found that
adversarially trainedmodels were still susceptible to black-box, single-step attacks generated
from other networks. Other adversarial defenses based on detecting the perturbation in the
input [200, 105, 87, 313, 270] or pre-processing the input [107, 176, 308, 237] have also all been
subverted [11, 10, 34, 119, 35, 286]. Recently, progress has been made on formal verification
of neural networks [135, 31] which can provably compute the adversarial perturbation
with the minimum norm for a network. However, as these methods are limited to certain
architectures, and do not scale to large networks, they cannot be used on the state-of-the-art
networks we consider in this work.

Currently, no effective defense to all adversarial attacks exist. This motivates us, for the
first time to our knowledge, to study the properties of state-of-the-art segmentation networks
and how they affect robustness to various adversarial attacks. Previous evaluations have
only considered standard classification networks (Inception in [161], and GoogleNet, VGG
and ResNet in [187]). We consider the more complex task of semantic segmentation, and
evaluate eight different architectures, some of them with multiple classification backbones,
and show that some features of semantic segmentationmodels (such as CRFs andmulti-scale
processing) naturally implement recently proposed adversarial defenses. Moreover, our
evaluation is carried out on two large-scale datasets instead of only ImageNet as [161, 187].
This allows us to show that not all previously observed empirical results on classification
transfer to segmentation.

The conclusions from our evaluations may thus aid future efforts to develop defenses
to adversarial attacks that preserve predictive accuracy. Moreover, our results suggests
which state-of-the-art models for semantic segmentation should currently be preferred in
(safety-critical) settings where both accuracy and robustness are a priority.

Note that adversarial examples have been shown to exist for semantic segmentation
before by [309, 201, 54]. However, our work is complementary, as we thoroughly study the
properties of semantic segmentation networks and how they affect robustness to adversarial
attacks. Previous works were not as systematic as they only considered one particular
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network, did not limit the norm of the adversarial perturbation and did not show how
different architectural components impact adversarial robustness. Moreover, although [309]
propose a gradient-based attack algorithm which considers each pixel independently, we
show that similar and more common FGSM-based methods [161, 196, 104] (which [309] did
not use as a baseline) are still effective.

6.4 Experimental Set-up

We describe the datasets, DNN models, adversarial attacks and evaluation metrics used for
our evaluation in this section. Exhaustive details are included in the supplementary. We
have also released our code1 to aid reproducibility.

Datasets. We use the Pascal VOC [81] and Cityscapes [57] validation sets, the two most
widely used semantic segmentation benchmarks. Pascal VOC consists of internet-images
labelled with 21 different classes. The reduced validation [329, 189] set contains 346 images,
and the training set has about 70000 images when combined with additional annotations
from [110] and [180]. Cityscapes consists of road-scenes captured from car-mounted cameras
and has 19 classes. The validation set has 500 images, and the training set totals about
23000 images. As this dataset provides high-resolution imagery (2048× 1024 pixels) which
require too much memory for some models, we have resized all images to 1024× 512 when
evaluating.

Models. We use a wide variety of current or previous state-of-the-art models, ranging
from lightweight networks suitable for embedded applications to complex models which
explicitly enforce structural constraints. Whenever possible, we have used publicly available
code or trained models. The models we had to retrain achieve similar performance to the
ones trained by the original authors.

We used the public models of CRF-RNN [329], DilatedNet [319], PSPNet [328] on
Cityscapes, ICNet [328] and SegNet [13]. We retrained FCN [189] and E-Net [227], as well as
Deeplab v2 [43] and PSPNet for VOC as the public models are trained with the validation set.
Our selection of networks are based on both VGG [267] and ResNet [117] backbones, whilst
E-Net and ICNet employ custom architectures for real-time applications whose parameters
measure only 1.5MB and 30.1MB in 32-bit floats, respectively. Furthermore, the models
we evaluate use a variety of unique approaches including dilated convolutions [319, 43],
skip-connections [189], specialised pooling [328, 43], encoder-decoder architecture [13, 227],
multiscale processing [43] and CRFs [329]. In all our experiments, we evaluate the model

1www.robots.ox.ac.uk/~aarnab/adversarial_robustness.html
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in the same manner it was trained – CRF post-processing or multiscale ensembling is not
performed unless the network incorporated CRFs [329] or multiscale averaging [43] as
network layers whilst training.

Adversarial attacks. We use the FGSM, FGSM ll, Iterative FGSM and Iterative FGSM ll
attacks described in Sec. 6.2. Kurakin et al. [161] set the number of iterations of iterative
attacks to min(ε + 4, d1.25εe). However, we found that attacks did not always converge
with this setting, and instead used max(ε + 4, d5εe). We set our step-size α = min(1, ε)

meaning that the value of each pixel is changed by α (if it is not clipped due to the max-norm
constraint) every iteration. The Iterative FGSM (untargeted) and FGSM ll (targeted) attacks
are only reported in the supplementary as we observed similar trends on FGSM and Iterative
FGSM ll. We evaluated these attacks when setting the `∞ norm of the perturbations ε to
each value from {0.25, 0.5, 1, 2, 4, 8, 16, 32}. Even small values such as ε = 0.25 introduce
errors among all the models we evaluated. The maximum value of ε was chosen as 32 since
the perturbation was conspicuous at this point. Qualitative examples of these attacks are
shown in the supplementary.

Evaluation metric. The Intersection over Union (IoU) is the primary metric used in
evaluating semantic segmentation [81, 57]. However, as the accuracy of each model varies,
we adapt the relative metric used by [161] for image classification and measure adversarial
robustness using the IoU Ratio – the ratio of the network’s IoU on adversarial examples to
that on clean images computed over the entire dataset. As the relative ranking between
models for the IoU Ratio and absolute IoU is typically the same, we report the latter only in
the supplementary.

6.5 The robustness of different architectures

In this section, we evaluate the robustness of different network architectures. Our ex-
periments show a more nuanced relationship between model capacity and adversarial
robustness, by considering a different setting to the previous findings of [196, 161]. Addi-
tionally, our results also support why JPEG compression as a pre-processing step mitigates
small perturbations [76].

6.5.1 The robustness of different networks

Fig. 6.2 shows the robustness of several state-of-the-art models on the VOC dataset. In
general, ResNet-based models not only achieve higher accuracy on clean inputs but are also
more robust to adversarial inputs. This is particularly the case for the single-step FGSM
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(a) Untargeted FGSM attack (b) Targeted Iterative FGSM ll. attack

Figure 6.2: Adversarial robustness of state-of-the-art models on Pascal VOC. Models based
on the ResNet backbone tend to be more robust. For instance, FCN8s and Deeplab v2 ASPP
with a ResNet-101 backbone are more robust than with the VGG backbone. Moreover, as
expected, the Iterative FGSM ll attack is more powerful at fooling networks than single-step
FGSM. Models are ordered by increasing IoU on clean inputs. Results on additional attacks
are in the supplementary.

attack (Fig. 6.2a). On the more effective Iterative FGSM ll attack, the margin between the
most and least robust network is smaller as none of them perform well (Fig. 6.2b). However,
we note that iterative attacks tend not to transfer to other models [161] (Sec. 6.6.2). Thus,
they are less useful in practical, black-box attacks.

In particular, we have evaluated the FCN8s [189] and Deeplab-v2 with ASPP [43] models
based on the popular VGG-16 [267] and ResNet-101 [117] backbones. In both cases, the
ResNet variant shows greater robustness. We also observe that most of the networks achieve
similar scores on clean inputs. As a result, the relative rankings of models in Fig. 6.2 for
the IoU Ratio is about the same as their ranking on clean inputs. Furthermore, the best
performing model on clean inputs, PSPNet [328] is actually less robust than Deeplab v2
with Multiscale ASPP [43]: For all ε values we tested, the absolute IoU score of Deeplab v2
was higher than PSPNet. These observations as well as results on FGSM ll and Iterative
FGSM showing that the relative ranking of robustness for the different networks is similar,
are detailed in the supplementary material.

6.5.2 Model capacity and residual connections

Madry et al. [196] and Kurakin et al. [161] have studied the effect of model capacity on
adversarial robustness by changing the number of filters at each convolutional layer in
their network, since they used the parameter count as a proxy for the model capacity.
Madry et al. [196] observed, on MNIST and CIFAR-10, that networks trained on clean
examples with a small number of parameters are the most vulnerable to adversarial
examples. This observation, which suggests that small networks with few parameters are
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(a) Untargeted FGSM attack (b) Targeted Iterative FGSM ll. attack

Figure 6.3: Adversarial robustness of state-of-the-art models on the Cityscapes dataset. We
observe that lightweight networks such as E-Net [227] and ICNet [327] are often about
as robust as Dilated-Net [319] (341×more parameters than E-Net). Dilated-Net without
its “Context” module is also slightly more robust than the full network (these findings
regarding parameter count are contrary to Madry et al. [196] who however did not evaluate
different architectures). Both attacks are very effective after ε ≥ 16, with performance of all
networks degraded considerably. As with the VOC dataset, ResNet (PSPNet) architectures
are more robust than VGG (Dilated-Net and FCN8).

the most vulnerable to adversarial examples, would have serious safety implications on the
deployment of lightweight models, typically required in robotics, autonomous vehicles and
embedded system applications. Here, we instead analyse different network structures that
are used in practice (unlike [196] and [161] who used the same architecture with a different
number of filters) and show in Fig. 6.3 that lightweight networks such as E-Net [227] (only
1.5 MB) and IC-Net [327] (only 30.1 MB) are affected by adversarial examples similarly as
Dilated-Net [319] which has 512.6 MB in parameters (using 32-bit floats). Dilated-Net is
only more robust than both of these lightweight networks for FGSM and FGSM-ll with ε ≥ 4

(which is also when perturbations become visible to the naked eye). Note that both E-Net
and IC-Net have custom backbones and heavily use residual connections.

Fig. 6.3 also shows that adding the “Context”module of Dilated-Net onto the “Front-end”
slightly reduces robustness across all ε values on both attacks on Cityscapes. Fig. 6.2 shows
that this is observed for most ε values on VOC as well. This is even though the additional
parameters of the “Context” module increases accuracy on clean inputs. Whilst models
with higher capacity may be more resistant to adversarial attacks (as posited by Madry et
al. [196]), one cannot compare the capacities of different networks, given that neither the
most accurate network (PSPNet) or the network with the most parameters (Dilated-Net) are
actually the most robust.

6.5.3 The unexpected effectiveness of single-step methods on Cityscapes

The single-step FGSM and FGSM ll attacks are significantly more effective on Cityscapes
than on Pascal VOC. The IoU ratio for FGSM at ε = 32 for PSPNet, Dilated Context and
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Figure 6.4: The IoU Ratio compared to the IoU on clean inputs on the Pascal VOC dataset,
for the FGSM attack with ε = 8. The relative ordering of the models is the same if we plot
the absolute IoU on adversarial inputs, with the exception of SegNet which is then ranked
the lowest.

FCN8s is 2.5%, 2.8% and 8.0%, respectively, on Cityscapes. On Pascal VOC, it is substantially
higher at 27.9%, 12.2% and 15.0%. As expected, the iterative methods still significantly
outperform single-step methods across both datasets.

Thus, it may be a dataset property that causes the network to learn weights more
susceptible to single-step attacks. Cityscapes has, subjectively, less variability than VOC
and it also labels “stuff” classes [91]. The effect of the training set on adversarial attacks has
not been considered before, and most prior work used MNIST [278, 104, 196] or ImageNet
[161, 284, 187]. However, [24] and [146], showed that the test error of an SVM and neural
network could respectively be increased by inserting “poisonous” examples into its training
set. Results from the FGSM ll attack, which shows the same trend as FGSM, are in the
supplementary.

6.5.4 Imperceptible perturbations

With ε = 0.25, the perturbation is so small that the RGB values of the image pixels (assuming
integers ∈ [0, 255]) are usually unchanged. Nevertheless, Fig. 6.2 and 6.3 show that the
performance of all analysed models were degraded by at least 3% relative IoU for each
attack. The observation of [76], that lossy JPEG as a pre-processing step helps to mitigate
FGSM for small ε is thus not surprising as JPEG does not entirely preserve these small,
high-frequency perturbations and the result is also finally rounded to integers.
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6.5.5 Relation with concurrent work

Our results are also corroborated by the concurrent work of Cubuk et al. [61] who performed
Neural Architecture Search to find architectures that aremore robust to adversarial examples.
Cubuk et al. [61] found that their best architecture had more identity connections and depth
than their baseline. This agrees with our observation that models based on ResNet typically
have higher robustness and accuracy on clean inputs.

The authors also observed a correlation between accuracy on clean data and robustness.
We also observed this correlation (Fig. 6.4), although the most accurate model on clean
inputs (PSPNet) is not the most robust (Deeplab v2 Multiscale). Figure 6.4 shows the results
on the FGSM attack at ε = 8, for consistency with [61].

6.5.6 Discussion

We have shown that models with residual connections (ResNet, E-Net, ICNet) are inherently
more robust than chain-like VGG-based networks, even if the number of parameters of the
VGG model is orders of magnitude larger. Moreover, Dilated-Net, without its “Context”
module is more robust than its more performant, full version. This is contrary to the
observations regarding parameter count of [196], who noted that smaller networks were
less adversarially robust on MNIST and CIFAR-10. However, a key difference between
our experiments and [196, 161] is that we have considered different network architectures
whilst [196] only changed the number of filters at each DNN layer. Our results in this
regard are more in line with Kurakin et al. [161] who reported with Inception-v3 [277] based
architectures on ImageNet thatmodels thatwere too large or too small were less adversarially
robust. The most robust model was Deeplab v2 with Multiscale ASPP, outperforming the
current state-of-the-art PSPNet [328], in absolute IoU on adversarial inputs.

We also found that perturbations that do not even change the image’s integral RGB values
still degraded performance of all models, and that single-step attacks are significantly more
effective on Cityscapes than VOC, achieving as low as 0.8% relative IoU, raising questions
about how the training data of a network affects its decision boundaries. Also, explaining the
effect of residual connections on adversarial robustness remains an open research question.
As Deeplab v2 showed a significant increase in robustness over its single-scale variant, we
analyse the effects of multiscale processing next in Sec. 6.6. Thereafter, we study CRFs, a
common component in semantic segmentation models.
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Table 6.1: Transferability of adversarial examples generated from different scales of Deeplab
v2 (columns) and evaluated on different networks (rows). The underlined diagonals for
each attack show white-box attacks. Off-diagonals, show transfer (black-box) attacks. The
most effective one in bold, is typically from the multiscale version of Deeplab v2. The IoU
ratio is reported.

Network evaluated FGSM (ε = 8) Iterative FGSM ll (ε = 8)
50% 75% 100% Multiscale 50% 75% 100% Multiscale

Deeplab v2 50% scale (ResNet) 37.3 70.5 84.8 60.3 18.0 92.0 96.9 20.0
Deeplab v2 75% scale (ResNet) 85.5 39.7 62.2 50.8 99.5 17.9 89.9 20.4
Deeplab v2 100% scale (ResNet) 93.6 57.9 37.7 37.2 100.0 79.0 15.5 16.8
Deeplab v2 Multiscale (ResNet) 83.7 57.6 62.3 53.1 99.6 90.2 91.9 21.5

Deeplab v2 100% scale (VGG) 94.3 70.6 66.9 66.5 98.9 88.4 86.3 80.9
FCN8 (VGG) 94.7 67.2 65.8 65.4 98.4 85.2 84.9 78.5
FCN8 (ResNet) 94.0 66.3 63.5 63.1 99.4 82.6 80.3 74.1

6.6 Multiscale Processing and Transferability of Adversarial Ex-
amples

Deeplab v2 with Multiscale ASPP was the most robust model to various attacks in Sec. 6.5,
with a significant difference to its single-scale variant. In this section, we first examine the
effect of multiscale processing and then relate our observations to concurrent work.

6.6.1 Multiscale processing

The Deeplab v2 network processes images at three different resolutions, 50%, 75% and
100% where the weights are shared among each of the scale branches. The results from
each scale are upsampled to a common resolution, and then max-pooled such that the
most confident prediction at each pixel from each of the scale branches is chosen [43].
This network is trained in this multiscale manner, although it is possible to perform this
multiscale ensembling as a post-processing step at test-time only [44, 63, 178, 328].

We hypothesise that adversarial attacks, when generated at a single scale, are no longer
as malignant when processed at another. This is because CNNs are not invariant to scale,
and a range of other transformations [85, 229, 123]. And although it is possible to generate
adversarial attacks from multiple different scales of the input, these examples may not be as
effective at a single scale, making networks which process images at multiple scales more
robust. We investigate the transferability of adversarial perturbations generated at one scale
and evaluated at another in Sec. 6.6.2, and the robustness and transferability of multiscale
networks in Sec. 6.6.3. Thereafter, we relate our findings to concurrent work.

6.6.2 The transferability of adversarial examples at different scales

Table 6.1 shows results for the FGSM and Iterative FGSM ll attacks. The diagonals show
“white-box” attackswhere the adversarial examples are generated from the attacked network.
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These attacks typically result in the greatest performance degradation, as expected. The
off-diagonals show the transferability of perturbations generated from other networks. In
constrast to Iterative FGSM ll, FGSM attacks transfer well to other networks, which confirms
the observations [161] made in the context of image classification.

The attack produced from 50% resolution inputs transfers poorly to other scales of
Deeplab v2 and other architectures, and vice versa. This is seen by looking across the
columns and rows of Tab. 6.1 respectively. All other models, FCN (VGG and ResNet) and
Deeplab v2 VGG were trained at 100% resolution, and Tab. 6.1 shows that perturbations
generated from the multiscale and 100% resolutions of Deeplab v2 transfer the best. This
supports the hypothesis that adversarial attacks produced at one scale are not as effective
when evaluated at another since CNNs are not scale invariant (the network activations
change considerably).

6.6.3 Multiscale networks and adversarial examples

The multiscale version of Deeplab v2 is the most robust to white-box attacks (Tab. 6.1,
Fig. 6.2) as well as perturbations generated from single-scale networks. Moreover, attacks
produced from it transfer the best to other networks as well, as shown by the bolded entries.
This is probably because attacks generated from this model are produced from multiple
input resolutions simultaneously. For the Iterative FGSM ll attack, only the perturbations
from the multiscale version of Deeplab v2 transfer well to other networks, achieving a
similar IoU ratio as a white-box attack. However, this is only the case when attacking a
different scale of Deeplab. Whilst perturbations from multiscale Deeplab v2 transfer better
on FCN than from single-scale inputs, they are still far from the efficacy of a white-box
attack (which has an IoU ratio of 15.2% on FCN-VGG and 26.4% on FCN-ResNet).

Adversarial perturbations generated from multiscale inputs to FCN8 (which has only
been trained at a single scale) behave in a similar way: FCN8 with multiscale inputs is more
robust to white-box attacks, and its perturbations transfer better to other networks. This
suggests that the observations seen in Tab. 6.1 are not properties of training the network, but
rather the fact that CNNs are not scale invariant. Furthermore, an alternative to max-pooling
the predictions at each scale is to average them. Average-pooling produces similar results to
max-pooling. Details of these experiments, along with results using different attacks and
l∞ norms (ε values), are presented in the supplementary.

6.6.4 Relation to other defenses

Our observations relate to the “random resizing” defense of [308] in concurrent work. Here,
the input image is randomly resized and then classified. This defense exploits (but does
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Transformation None
(ε = 0)

None
(ε = 8)

JPEG recom-
pression

Gaussian
blur

HSV jitter Stochastic
grayscale

Input

Prediction

Figure 6.5: Input transformations of adversarial examples generated by Iterative FGSM
ll (Eq. 6.6) significantly change the prediction of the Deeplab v2 network. These input
transformations, however, barely change the output when they are applied to clean images.
The l∞ norm of the perturbation, ε = 8, is visible when looking carefully on screen.

not attribute its efficacy to) the fact that CNNs are not scale invariant and that adversarial
examples were only generated at the original scale. Our findings suggest that this defense
(which is very similar to the multiscale processing performed naturally by Deeplab v2)
could be defeated by creating adversarial attacks from multiple scales, as done in this work,
and this has indeed been verified [11, 286].

6.7 Image transformations and adversarial examples

In Sec. 6.6, we posited that adversarial examples are less malicious when processed at
different scales since CNNs are not scale invariant. Scale changes are used in segmentation
architectures to recognise objects at different resolutions, however, this is not the only
commonly used image transformation. In this section, we consider a number of other
common input transformations, and examine their effect on adversarial robustness of CNNs
for semantic segmentation.

In the following, each transformation is applied to the input image before it is processed
by the neural network and we examine how it affects the robustness to adversarial examples.
Following on from Sec. 6.6, we use the Deeplab v2 MS network, which we found to be
the most robust in Sec. 6.5, and consider the following four transformations (illustrated in
Fig. 6.5) which are ubiquitous in computer vision and image processing:

JPEG recompression. The image is compressed using JPEG with a “quality” parameter
drawn randomly between 50% and 100%. The image is then reconstructed and processed
by the network.

Gaussian blur. The input image is blurred by a Gaussian filter with a bandwidth
uniformly drawn from [0, 2], which ensures that all objects in the image are still recognisable
and can be segmented precisely.
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Figure 6.6: The adversarial examples originally generated by Iterative FGSM ll on Deeplab
v2, are less malignant when the adversarial image is first pre-processed with a randomised
transformation. The shaded regions correspond to two standard deviations computed from
nine random trials of the randomised transformation.

HSV jitter. The image is converted to the HSV colour space (which is more perceptually
similar than the RGB space). Next, each pixel is perturbed by a value drawn uniformly
between [−30, 30] and then converted back to RGB space for processing.

Grayscale. The input image is converted to grayscale by setting all three image channels
to have the same value at each pixel. This was performed using a convex combination of
each of the three RGB channels, with each of the co-efficients sampled from a flat Dirichlet
distribution.

Note that none of the transformations affect the image spatial co-ordinates, which means
that it is suitable for using with semantic segmentation models without any additional
post-processing. These transformations, though quite disparate, all have a similar effect on
adversarial robustness as described in the next subsection.

6.7.1 Robustness conferred by randomised input transformations

Figure 6.6 shows that each type of input transformation substantially increases the robustness
of Deeplab v2 to the Iterative FGSM ll attack on the VOC dataset, with “JPEG recompression”
and “Gaussian blur” providing substantial benefits. Converting the image to grayscale
with random channel coefficients provides a smaller, but still sizeable, improvement.
These findings are consistent and show little variance over 9 different trials, since each
input transformation is randomised. The IoU of the transformed images at ε = 0 (i.e.
corresponding to no attack) is similar to the original image with the largest difference about
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2%. Therefore, the network is more sensitive to input transformations on adversarial images
than it is on clean ones.

These results, in addition to Tab. 6.1, show that as neural networks are not invariant
to many classes of transformations of the input, their predictions on adversarial examples
subject to these transformations change. Consequently, predictions on transformed adver-
sarial inputs are different to the original adversarial example, and this typically results in
the adversarial example becoming less malignant. These findings are consistent across a
broad range of geometric and photometric transformations.

Dziugaite et al. [76] previously observed that JPEG recompression improved adversarial
robustness for small ε values in the context of image classification. However, the authors
hypothesised that a special property of the JPEG algorithm (i.e. mapping images back
onto the manifold of natural images) was the reason it conferred additional robustness. In
contrast, our study of various different transformations suggest that JPEG recompression
is just one instance of the numerous input transformations which neural networks are not
invariant to. As a result, JPEG recompression, along with other image transformations,
increases robustness to adversarial examples that were generated by attacks which did not
take it into account.

6.7.2 Subverting randomised, non-differentiable input transformations

The results shown in Fig. 6.6 suggest that randomised input transformations serve as an
effective defense to adversarial attacks. They significantly reduced the effectiveness of the
Iterative FGSM ll attack, which has been the most powerful attack in our experiments, and
the result for ε = 0 also shows that this method has minimal performance penalties on
clean inputs. This reasoning has been exploited by the concurrent work of [107], where the
authors showed how several different input transformations increased the robustness of
image classification models to adversarial attacks.

However, the results in Fig. 6.6 and [107] assume that knowledge of the defence
mechanism (randomised input transformations in this case) is not exploited in generating
the adversarial attack. This methodology goes against Kerckhoffs’ principle [138] – the
basis of modern cryptographic systems – which states that a system should be secure if
everything about it barring the key is public knowledge.

Consequently, to confirm if randomised input transformations really confer adversarial
robustness, we modify the Iterative FGSM ll update (Eq. 6.6) to compute the expected
gradient over the distribution of transformations which could be applied at inference time,

xadv
t+1 = clip

(
xadv
t − α · sign(Et∼T∇xadv

t
L(f(t(xadv

t ); θ), yll), ε)
)
, (6.7)
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Figure 6.7: The randomised input transformations no longer increase the robustness of the
network when the expected gradient over the distribution of the transformation functions
is used in the Iterative FGSM ll attack. The shaded regions correspond to two standard
deviations computed from nine random trials of the randomised transformation. The
dashed blue line shows the original Iterative FGSM ll attack on non-transformed images.

where T is the distribution of transformation functions t. This method uses the fact that
∇xEt∼T f(t(x)) = Et∼T∇xf(t(x)). It has also been used by [11] to estimate the gradient
of neural networks with randomised non-differentiable adversarial defences [308]. This
variant of the FGSM attack corresponds to sampling from the distribution of transformations,
computing the loss and gradient of the image with respect to the loss, and averaging this
gradient over many samples before performing the update.

Note that some transformations, such as JPEG recompression, are not differentiable. In
this case, we use the straight-through estimator [21] which assumes, when computing the
gradient using backpropagation, that the transformation is the identity function.

Figure 6.7 shows the results of the Expectation over Transformations (EOT) attack
(Eq. 6.7) on the Deeplab v2 model on the Pascal VOC dataset, with the expectation computed
over 10 samples. The randomised JPEG and Gaussian blur input transformations increase
the robustness of the model marginally, whilst jittering pixel values in the HSV space and
grayscale conversion provide no additional robustness. The final IoU is similar to the
original model that did not use randomised input transformations and was attacked with
the standard Iterative FGSM ll attack. To our knowledge, we are the first who show that
neural networks can easily be attacked with both non-differentiable and randomised input
transformations. However, we point out that [11] have attacked numerous recent defenses,
some which were either non-differentiable or randomised, but not both.
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(a) JPEG recompression (b) Gaussian blur (c) HSV jitter (d) Stochastic grayscale

Figure 6.8: The effectiveness of adversarial examples generated with one distribution of
input transformations, and evaluated with another. The title of each graph shows the input
transformation the adversarial examples were generated with. Each graph is effectively a
column of Tab. 6.2 for multiple ε values. The dotted blue line shows the Iterative FGSM ll
attack when input transformations are not used at either inference or attack generation time.

6.7.3 Transferability of input transformations

The previous two parts have shown that using input transformations reduces themalignancy
of an adversarial perturbation (Sec. 6.7.1). Our second observation, however, showed that
whenever we exploit knowledge about the input transformation during attack generation,
the perturbation can become as malignant as the attack on the image with no input
transformation (Sec. 6.7.2).

In this section, we examine the transferability of the perturbations generated from
different transformations as described in Sec. 6.7.2. For example, we consider the efficacy of
a perturbation created using the “JPEG recompression” transformation when the network’s
input is pre-processed with “Gaussian blur” instead. This has important implications
on the robustness and security of neural networks; if the perturbations do not transfer
across different input transformations, it would suggest that a “security-through-obscurity”
approach could be used, as a defender could secure their system by ensuring that the
attacker does not know the input transformations they are using. It also has implications on
our ability to produce malicious physical adversarial examples [160, 259], as physical objects
in the real world can be viewed from a diverse range of illumination conditions, camera
viewpoints and other transformations of an original canonical view.

Table 6.2 and Fig. 6.8 show our results when the adversarial perturbation generated
using one distribution of transformations is applied on a network using another randomised
transformation as pre-processing. Table 6.2 shows the absolute IoU (to account for the fact
that input transformations cause slight changes on the accuracy of clean inputs) for ε = 8,
which is when the adversarial perturbations become conspicuous to the human eye, whilst
Fig. 6.8 summarises the results for all ε values. Perturbations generated to target “JPEG
recompression” or “Gaussian blur” input pre-processing (the two transformations which
confer the most robustness to standard attacks generated without transformations (Fig. 6.6)),
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Table 6.2: Transferability of adversarial attacks generatedwith different input transformation
distributions. The left column indicates the distribution of transformations (as described
in Sec. 6.7) that was used at inference time, and the other columns show the input
transformations used when generating the attack. This table shows the mean absolute IoU
scores of the Deeplab v2 network on the VOC dataset for the Iterative FGSM ll attack with
ε = 8. The diagonals show “white-box” entries where the input transformation distribution
used at inference time is used to generate the attack as well. The bold entries off the
diagonals show the strongest attack when a different transformation distribution is used at
inference time.

Input transformation to generate attackInput transformation
at inference time

JPEG
recompression Gaussian blur HSV jittering Stochastic

grayscale None

JPEG recompression 19.7 30.9 17.2 17.4 47.7
Gaussian blur 31.6 18.4 21.3 22.4 43.5
HSV jitter 39.9 39.2 15.7 16.3 33.5
Stochastic grayscale 50.0 49.3 32.0 13.6 25.2
None 11.6 14.4 12.0 24.4 15.5

show poor transferability when the “Grayscale” or “HSV jitter” input transformation
is used instead. In contrast, perturbations generated to target the “Grayscale” input
transformation transfer the best to the other input transformations that we have considered
in our experiments. Additionally, the last row of Tab. 6.2 shows that when no input
transformation is used at inference time, attacks generated to target a particular input
transformation are more effective with the exception of the “Grayscale” transformation.
This corresponds with our results in Sec. 6.6 where adversarial attacks generated at multiple
scales transferred better to other models.

There are clearly a myriad of input transformations that could be performed as input pre-
processing to a neural network, of which we have considered only a handful. Nevertheless, it
is evident that targeting some input transformations (such as grayscale conversion) appears
to produce perturbations that are more transferable to other input transformations in
comparison to others (JPEG recompression). This raises an important research question
about why including certain input transformations into the attack generation process
transfer better to other input transformations. It also suggests another critical and open
question, whether it is possible to produce adversarial perturbations that are malignant
across all input transformations without modelling all of these transformations explicitly
when generating the attack.

6.7.4 Relation to concurrent work

Our findings corroborate with concurrent work discussing producing physical adversarial
attacks. Lu et al. [192] created adversarial traffic signs by capturing images of road signs
from 0.5m and 1.5m away, generating attacks from these images on a computer, and then
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printing out the adversarial image onto paper. Whilst the printed image taken from 0.5m
away fooled an object detector viewing the adversarial image from 0.5m, it did not when
viewed from 1.5m and vice versa. This result is corroborated by Tab. 6.1 which shows
that adversarial examples transfer poorly across different scales. Subsequent work [12, 82]
has shown that it is possible to construct adversarial examples that are malignant across
multiple different scales by incorporating scale changes into the attack generation process.
This is again supported by our results in Tab. 6.1, and Sec. 6.7.2 which also show this
effect for a number of other input transformations. When producing physical adversarial
attacks, it is difficult to model all the transformations that the original image could be
subject to, and as reflected by Sec. 6.7.3, adversarial examples generated to target a particular
transformation do not always transfer well to other input transformations. This may explain
why the adversarial traffic signs generated by [82] have not been able to fool the detectors
subsequently evaluated by Lu et al. [193]. Our observation that input transformations that
were not explicitly modelled in the attack generation process mitigate the effectiveness of
adversarial attacks also suggest that future work on physical adversarial attacks requires
much more robust evaluation than initial work in this area [160, 82, 192, 29]. This is to
ascertain whether the proposed attacks are still effective in the diverse environmental
conditions that images of the adversarial object may be acquired from.

Our study of the effect of input transformations on adversarial robustness also emphasises
the importance of incorporating knowledge of the proposed adversarial defence into the
attack used to validate it (Kerckhoff’s principle [138]). This is not the case for many recently
proposed defenses [107, 308, 30, 176] which have all subsequently been defeated [34, 11, 286,
10].

6.8 Effect of CRFs on Adversarial Robustness

Conditional Random Fields (CRFs) are commonly used in semantic segmentation to enforce
structural constraints [6]. The most common formulation is DenseCRF [154], which
encourages nearby (in terms of position or appearance) pixels to take on the same label
and hence prefers smooth labelling. This is done by a pairwise potential function, defined
between each pair of pixels, which takes the form of a weighted sum of a bilateral and
Gaussian filter.

Intuitively, one may observe that adversarial perturbations typically appear as a high-
frequency noise, and thus the pairwise terms of DenseCRF which act as a low-pass filter,
may provide resistance to adversarial examples. To verify this hypothesis, we consider
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(a) (b) (c)
Figure 6.9: (a) On untargetted attacks on Pascal VOC, CRF-RNN is noticably more robust
than FCN8s. (b) CRF-RNN is more vulnerable to black-box attacks from FCN8, due to its
“gradient masking” effect which results in ineffective white-box attacks. (c) However, the
CRF does not “mask” the gradient for targeted attacks and it is no more robust than FCN8s.

CRF-RNN [329]. This approach formulates mean-field inference of DenseCRF as an RNN
which is appended to the FCN8s network [189], enabling end-to-end training.

6.8.1 CRFs confer robustness to untargeted attacks

Fig. 6.9a shows that CRF-RNN is markedly more robust than FCN8s to the untargeted
FGSM and Iterative FGSM attacks. To verify the hypothesis that the smoothing effect of
the pairwise terms increases the robustness to adversarial attacks, we evaluated various
values of the bandwidth hyperparameters defining the pairwise potentials (not learned; in
Fig. 6.9a, we used the values of the public model).

Higher bandwidth values (increasing smoothness) do not actually lead to greater
robustness. Instead, we observed a correlation between the final confidence of the predictions
(from different hyperparameter settings) and robustness to adversarial examples. We
measured confidence according to the probability of the highest-scoring label at each
pixel, as well as the entropy of the marginal distribution over all labels at each pixel. The
mean confidence and entropy for CRF-RNN (with original hyperparameters) is 99.1%
and 0.025 nats respectively, whilst it is 95.2% and 0.13 nats for FCN8s (additional details
in supplementary). The fact that mean-field inference tends to produce overconfident
predictions has also been noted previously by [210] and [33].

More confident predictions lead to a smaller loss, making attacks which use the gradient
of the loss with respect to the input less effective. The “Defensive Distillation” approach
of [225] made use of a similar fact by increasing the confidence of the model’s predictions,
resulting in gradients of smaller norm. The key difference is that CRFs increase the
confidence as a by-product of a technique generally used to improve accuracy on numerous
pixel-wise labelling tasks, while the effect of [225] on accuracy is unknown, as it was only
tested on the saturated MNIST and CIFAR10 datasets.
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(a) (b) (c)
Figure 6.10: Similar trends are observed for Deeplab v2, which uses the DenseCRF model
as post-processing, as CRF-RNN (Fig. 6.9) which integrates the CRF as part of the deep
network. (a) On untargetted attacks, Deeplab v2 with a CRF is noticably more robust than
just the Deeplab v2 network. (b) Attacks created from the base Deeplab v2 network using
FGSM are more effective than those created from Deeplab v2 with CRF. This is due to the
“gradient masking” effect of mean-field inference of CRFs. (c) However, the CRF does not
“mask” the gradient for targeted attacks. As a result, Deeplab v2 with a CRF is no more
robust than just the Deeplab v2 network.

6.8.2 Circumventing the CRF

Although CRFs are more resistant to untargeted attacks, they can still be subverted in two
ways. CRF-RNN is effectively FCN8s with an appended mean-field layer. Fig. 6.9b shows,
that adversarial examples generated via FGSM from FCN8s (“unary” potentials) are more
effective on CRF-RNN than attacks from the output layer of CRF-RNN.

Also, targeted attacks with FGSM ll and Iterative FGSM ll are more effective since the
label used to compute the loss for generating the adversarial example is not the network’s
(highly confident) prediction but rather the least likely label. Consequently, the loss is
high and there is a strong gradient signal from which to compute the adversarial example.
Fig. 6.9c shows that CRF-RNN and FCN8s barely differ in their adversarial robustness to
targeted attacks.

Finally, Fig. 6.10 shows that the same observations hold on the DeepLab v2 network,
where the DenseCRF model is used as post-processing, and is not part of the neural network.
This confirms that end-to-end training of the CRF, as done in CRF-RNN [329], does not
influence adversarial robustness.

6.8.3 Discussion

The smoothing effect of CRFs, perhaps counter-intuitively, has no impact on the adversarial
robustness of a DNN. However, mean-field inference produces confident marginals, making
untargeted attacks less effective since they rely on the gradient of the final loss with respect
to the prediction. Black-box attacks generated from models without a CRF transfer well
to networks with a CRF, and are actually more effective. This is the case for both CRFs
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trained end-to-end [329] and used as post-processing [43], as shown in the supplementary.
Finally, CRFs confer no robustness to untargeted attacks. Our investigation of the CRF also
underlines the importance of testing thoroughly with black-box attacks and multiple attack
algorithms, which is not the case for numerous proposed defenses [55, 94, 104, 225].

6.9 Conclusion

Wehave presentedwhat to our knowledge is the first rigorous evaluation of the robustness of
semantic segmentation models to adversarial attacks. We believe our main observations will
facilitate future efforts to understand anddefend against these attackswithout compromising
accuracy:

Networks with residual connections are inherently more robust than chain-like networks.
This extends to the case of models with very few parameters, contrary to the prior
observations of [161, 196] (we stress that these were however made in a different context, as
they did not consider different network architectures, but only varied the number of filters
per DNN layer). Multiscale processing makes CNNs more robust since adversarial inputs
are not as malignant when processed at a different scale from which they were generated at,
probably as CNNs are not invariant to scale. Using other input transformations that CNNs
are not invariant make themmarkedly more robust to transformed adversarial examples but
only when the attack generation does not take knowledge of these input transformations into
account. This holds even when the input transformations are randomised. However, when
this knowledge is taken into account during attack generation, only marginal improvements
in robustness are observed. The fact that adversarial attacks generated to target particular
input transformation do not always transfer well to other input transformations also suggests
that producing physical adversarial attacks in varying environmental conditions is difficult.

Mean-field inference for Dense CRFs, which increases the confidence of predictions confers
robustness to untargeted attacks, as it naturally performs “gradient masking” [223, 225].
There are no robustness benefits from the smoothness priors enforced by the DenseCRF
model.

In the shorter term, our observations suggest that networks such as Deeplab v2, which is
based on ResNet and performs multiscale processing, should be preferred in safety-critical
applications due to their inherent robustness. As the most accurate network on clean inputs
is not necessarily the most robust network, we recommend evaluating robustness to a variety
of adversarial attacks as done in this paper to find the best combination of accuracy and
robustness before deploying models in practice. We also emphasize that it is crucial to
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evaluate proposed defenses judiciously, e.g. using the white-box attacks which exploit
knowledge of the proposed defense to assess the real efficacy of such a defense.

Adversarial attacks are arguably the greatest challenge affecting DNNs. The recent
interest of our field into this phenomenon is only the start of an important longer-term
effort, and we should also study the influence of other factors such as training regimes and
attacks tailored to evaluation metrics. In this paper, we have made numerous observations
and raised questions that will aid future work in understanding adversarial examples and
developing more effective defenses.
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Appendices

This appendix details the DNN models we analysed, and experiments we omitted from
the main paper since they follow similar trends. Section 6.A provides further details
about the experimental set-up, including the various DNNs used in the experiments.
Section 6.B shows qualitative examples of the adversarial attacks we studied. Section 6.C
presents further experimental results about “The robustness of different networks” (Sec.
6.5). Similarly, Section 6.D shows more experimental results about “Multiscale Processing
and Transferability of Adversarial Examples” (Sec. 6.6). Finally, Section 6.E presents further
experimental results on the “Effect of CRFs on Adversarial Robustness” (Sec. 6.8).

6.A Experimental setup

This section details the DNN models, additional information about the Cityscapes dataset
and the software and hardware used in the experiments.

6.A.1 Software and hardware setup

We use the Caffe [133] deep learning framework for all experiments, since most publicly
available segmentation models are implemented using this library. Our experiments are
performed on either a Nvidia M40 or P100 GPU which have 12GB and 16GB of memory
respectively.

6.A.2 Description of models

We detail each model in this section. Tab. 6.3 shows the performance of publicly available
models on thePascalVOCvalidation set. Table 6.4 compares the Intersection overUnion (IoU)
obtained by models that we have retrained compared to the original author’s performance
where available. Table 6.5 shows the performance of publicly available models on the
Cityscapes validation set. Finally, Tab. 6.6 lists the number of parameters in each of the
models.

FCN8s [189]. We retrained the FCN8s (VGG) network on Pascal VOC with additional
annotations from SBD [110] and MS-COCO [180]. The publicly available model of FCN8s is
not trained with MS-COCO, which is why we retrained it ourselves. As shown in Tab. 6.4,
we obtain an IoU of 68.7% on the VOC validation set, whilst the original authors who did
not train on MS-COCO obtained 65.5% [260].
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Table 6.3: Networks with public models, evaluated on the VOC validation set

Model Name IoU [%]

CRF-RNN [329] 72.8
Dilated Frontend [319] 67.1
Dilated Context [319] 70.4
SegNet [13] 43.0

Table 6.4: Performance of retrained models on VOC validation set. Details about FCN8,
Deeplab v2 and PSPNet can be found in Sec. 6.A.2.

Model Name IoU [%] IoU of authors [%]

FCN8s (VGG) [189] 68.7 –
FCN8s (ResNet) [189] 68.8 –

Deeplab v2 ASPP (VGG) [43] 66.9 68.9
Deeplab v2 ASPP (ResNet) [43] 73.3 –
Deeplab v2 Multiscale ASPP (ResNet) [43] 73.9 76.3
Deeplab v2 Multiscale ASPP (ResNet) + CRF post-
processing [43]

74.9 77.7

PSPNet [328] 75.9 –
PSPNet [328] (test set) 79.0 85.4

For the Cityscapes dataset, we used the publicly available VGG model2 from [261].
We trained FCN8swith a ResNet-101 backbone on Pascal VOC since no publicly available

model was available. As shown in Tab. 6.4, the IoU on clean inputs of this version is close to
the VGG version. We are not aware of any other published work to compare this number to.

Deeplab v2 [43]. We cannot use the publicly released models for the Pascal VOC dataset,
since they have been trained on the entire validation set as well. Hence, we use the authors’
publicly released training code3 to retrain their networks without the VOC validation set.

We retrained the Deeplab v2 network with ResNet-101 and VGG backbones on Pascal
VOC, achieving similar performance to the original authors as shown in Tab. 6.4. Note
that the authors [43] reported results from ablation experiments on the VOC validation set,
which we compare to in Tab. 6.4. However, these models have never been released.

For CRF post-processing, we used the hyperparameters used by the original authors.
As the weights of our trained model are different to the authors, it is possible that different
CRF hyperparameters that obtain a higher IoU on the validation set exist.

2https://github.com/shelhamer/clockwork-fcn
MD5 checksum of Caffe model: fcae4fdc759f9f461fffc7cc3baa96c6

3https://bitbucket.org/aquariusjay/deeplab-public-ver2.git
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Table 6.5: Networks with public models on Cityscapes validation set. We have reported
the IoU at 1024× 512 inputs, as well as the original 2048× 1024 if the network was trained
using full-resolution crops.

Model name IoU at
1024× 512

IoU at
2048× 1024

E-Net [227] 53.4 –
ICNet [327] 56.5 67.2
FCN8s (VGG) [261] 62.1 66.4
Dilated Frontend [319] 59.0 64.6
Dilated Context [319] 62.3 68.6
PSPNet [328] 74.4 79.7

PSPNet [328]. We used the publicly available model4 for our experiments on Cityscapes.
As the public VOC model has been trained on the entire validation set, we cannot use it for
our experiments. Consequently, we retrained this model ourselves achieving comparable
results to the original authors (Tab. 6.4). We followed the training procedure described in
the original paper where possible. However, the original authors trained the model using
16 GPUs allowing an effective batch size of 16. Due to our limited computational resources,
we could only train on a single GPU using a batch size of 1. The large batch size enabled the
original authors to compute better batch statistics for batch normalisation. When using a
batch size of 1, the variance in the batch statistics is too high to perform batch normalisation.
As a result, we “froze” our batch normalisation layers, and used the batch statistics (mean
and variance) of the ImageNet-pretrained ResNet-101 model. This is common practice in
training semantic segmentation [43] and object detection [129] networks where batch sizes
are typically small.

As shown in Tab. 6.4, our reimplementation of PSPNet on VOC achieves comparable
results to the original authors, even though it has been trained on 1449 fewer images (the
VOC validation set). We compared our implementation to the authors on the held-out test
set (evaluation is performed on an online server) as the performance on the validation set is
not reported in the original paper.

CRF-RNN [329]. We used the publicly available model for Pascal VOC (trained on MS-
COCO)5.

4https://github.com/hszhao/PSPNet
MD5 checksum of Caffe model: 29bbdf0ce4d2a6546ed473656db1d6e2

5https://github.com/torrvision/crfasrnn
MD5 checksum of Caffe model: bc4926ad00ecc9a1c627db82377ecf56
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Table 6.6: The number of parameters in each of the DNNmodels evaluated in this paper.
As all the networks are stored as 32-bit/4-byte floating point numbers, we reported the
number of parameters in megabytes (MB).

Model Name Dataset Number of
parameters (MB)

E-Net Cityscapes 1.5
ICNet Cityscapes 30.1
PSPNet (ResNet-101) Cityscapes 260.2
Dilated Frontend (VGG) Cityscapes 512.4
FCN8s (VGG) Cityscapes 512.5
Dilated Context (VGG) Cityscapes 512.6

Segnet (VGG) Pascal 112.4
Deeplab v2 (VGG) Pascal 144.5
FCN8s (ResNet-101) Pascal 162.9
Deeplab v2 (ResNet-101) Pascal 168.4
PSPNet (ResNet-101) Pascal 272.7
Dilated Frontend (VGG) Pascal 512.4
FCN8s (VGG) Pascal 513.0
CRF-RNN (VGG) Pascal 513.0
Dilated Context (VGG) Pascal 538.4

DilatedNet [319]. We used the public Pascal VOC and Cityscapes models6.

ICNet [327]. We used the public Cityscapes model7.

E-Net [227]. We used the public Cityscapes model8.

SegNet [13]. We used the public Pascal VOC model9.

6.A.3 Cityscapes dataset

Table 6.5 shows the performance of various publicly available models on the Cityscapes
validation set consisting of 500 images. Cityscapes images are captured at a high resolution
of 2048 × 1024, which is too large to fit into GPU memory for most networks. With the
exception of E-Net [227] (which is trained on half-resolution images), the other networks we
evaluated are trained on smaller crops of full-resolution images. Thereafter, at test time,

6https://github.com/fyu/dilation.
MD5 checksum for Pascal VOC: 7a44221dbc2611529bff32029ad1f6e2
MD5 checksum for Cityscapes: 0de4d78b5f9692f2aba5e7ed88f93ccb

7https://github.com/hszhao/ICNet
MD5 checksum of Caffe model: c7038630c4b6c869afaaadd811bdb539

8https://github.com/TimoSaemann/ENet
MD5 checksum of Caffe model: d9aabd630cf6bc29c48ea55a86124e14

9https://github.com/alexgkendall/SegNet-Tutorial/blob/master/Example_Models/segnet_
model_zoo.md
MD5 checksum of Caffemodel: 6e01077e3cda996f95b2a82ea4641a4c
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authors use different tiling strategies [319, 328] to process parts of an image at full resolution
before combining the partial results. To make a fairer comparison between models, we
process all images at half-resolution so that tiling is not required. In Tab. 6.5, we show the
IoU at the resolution we tested on, 1024× 512. And if the model was also trained on full
resolution crops, we also include the IoU of the network on full resolution inputs.

6.B Qualitative results

Figure 6.11 visualises adversarial perturbations of varying `∞ norms, showing how the
perturbations only become visible to the naked eye when the l∞ of the perturbation, ε, is 8

(when viewed on screen).
Figure 6.12 shows the results of the four adversarial attacks considered in this paper

when applied on the same image from the Pascal VOC dataset on the Deeplab v2 network.
Finally, Fig. 6.13 compares the outputs of different networks to the Iterative FGSM ll

attack for varying values of ε on the Cityscapes dataset.
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Input image Perturbation Adversarial Image
ε x r xadv = x + r
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Figure 6.11: A visualisation of adversarial perturbations of varying `∞ norms. The
perturbation, in the middle column, when added to the input, produces the adversarial
example that fools neural networks. Note that the mean RGB value (of the Pascal VOC
dataset) is already added to the perturbation, resulting in the grey background. This
is required for visualisation as the perturbation can be negative, and RGB images are
stored as positive integers ∈ [0, 255]. For ε = 0.25, the adversarial image and input image
are actually identical if rounded to integers (as RGB images are typically represented).
Nevertheless, perturbations of this norm have fooled every neural network studied in this
paper. Perturbations become noticeable when viewed on screen at around ε = 8. In this
figure, perturbations were created using FGSM on Deeplab v2.
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Input image Original prediction Ground truth

ε FGSM FGSM ll Iterative FGSM Iterative FGSM ll
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Figure 6.12: A comparison of different adversarial attacks on the Deeplab v2 Mulitscale
ASPP network [43], on a common image from Pascal VOC. As expected, iterative attacks
(last two columns) are more effective than single-step ones (first two columns). Higher l∞
norms of the perturbation, ε, also degrade the network’s prediction more.
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Input image Ground truth

ε ICNet [327] Dilated Context [319] PSPNet [328]
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Figure 6.13: Comparison of ICNet, Dilated Context and PSPNet when attacked by Iterative
FGSM ll, for different values of the l∞ norm, ε. Note how each network is affected differently,
with PSPNet the most robust. ε = 0 is the original prediction of the network, since no
perturbation is added here.
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6.C Robustness of Different Architectures

The main paper presented results using the FGSM and Iterative FGSM ll attacks for both
Pascal VOC and Cityscapes datasets. In this section, we present results for the targeted,
single-step FGSM ll and untargeted Iterative FGSM attacks as well. Furthermore, we also
include the Absolute IoU scores for each attack for different l∞ perturbations.

6.C.1 Results of other attacks

Figures 6.14 and 6.15 show results of the FGSM ll and Iterative FGSM attacks on the VOC
and Cityscapes datasets respectively. Our primary observations from the main paper are
mostly consistent on these attacks as well:

• ResNet based networks are more robust than models based on VGG.

• DilatedNet [319] without its “Context” module is typically more robust than the full,
more accurate network.

• E-Net and ICNet show similar robustness to DilatedNet on the Cityscapes dataset. It
is only for the FGSM ll attack for ε ≥ 4 that DilatedNet is robust than both of these
lightweight networks.

• Single-step attacks (FGSM ll) are particularly effective on Cityscapes at high ε values.

• PSPNet, which achieves the highest IoU on clean inputs, is typically not the most
robust network on Pascal VOC.

6.C.2 Result tables of Absolute IoU

In contrast to the main paper that showed the IoU Ratio for various attacks, Tables 6.7
through 6.10 show the absolute IoU for different models for each of the FGSM, FGSM ll,
Iterative FGSM and Iterative FGSM ll attacks on the Pascal VOC dataset. Additionally, Tables
6.11 through 6.14 show the absolute IoU for different models on the Cityscapes dataset.

Note that PSPNet, which achieves the highest IoU on clean inputs, does not usually
achieve thehighest absolute IoUwhenattackedon thePascalVOCdataset. When considering
4 adversarial attacks, and 8 ε values, PSPNet achieves the highest absolute IoU in only 2
out of 32 cases. Moreover, it never achieves the highest absolute IoU for imperceptible
perturbations (0 < ε ≤ 4).

Additionally, the highest absolute IoU for any ε value is always from a ResNet-based
model (Deeplab v2, FCN8s (ResNet) or PSPNet) on the Pascal VOC dataset. On Cityscapes,
FCN8s (VGG) is sometimes the most robust network at high ε values. However, the
performance of all the networks is severely degraded at this point.
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(a) Untargeted Iterative FGSM attack (b) Targeted FGSM ll. attack

Figure 6.14: Adversarial robustness of state-of-the-art models on the Pascal VOC dataset. As
with the FGSM and Iterative FGSM ll attacks in the main paper, models based on the ResNet
backbone are more robust. Deeplab v2 is generally the most robust network, except on the
Targeted FGSM attack for ε ≥ 4. The Iterative FGSM attack is also more effective at fooling
the networks than the single-step Targeted FGSM attack, as shown by the lower IoU ratios.

(a) Untargeted Iterative FGSM attack (b) Targeted FGSM ll. attack

Figure 6.15: Adversarial robustness of state-of-the-art models on the Cityscapes dataset.
As with the FGSM and Iterative FGSM ll attacks in the main paper, PSPNet is typically the
most robust. Once again, DilatedNet without its “Context” module is slightly more robust
than the full, more accurate network. The single-step FGSM ll attack is quite effective at
high ε values, but as expected, the Iterative FGSM attack is still more effective overall.

Table 6.7: The absolute IoU on the Pascal VOC dataset for various models when attacked
with FGSM. This is evaluated for eight different values of the `∞ norm of the perturbation,
ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

SegNet (VGG) 43.0 32.3 25.9 19.5 14.8 11.7 9.7 6.9 4.0
Deeplab v2 ASPP (VGG) 66.9 55.3 44.1 31.7 22.5 17.2 13.9 11.8 9.1
Dilated Frontend (VGG) 67.1 56.7 45.7 33.8 24.2 19.2 16.1 12.2 8.2
FCN8s (VGG) 68.7 55.7 45.4 36.1 28.8 23.9 19.9 16.1 10.3
FCN8s (ResNet) 68.8 55.9 49.9 44.2 39.5 35.9 32.0 24.8 12.8
Dilated Context (VGG) 70.4 55.8 44.9 34.4 26.0 20.6 17.2 13.9 9.0
Deeplab v2 ASPP (ResNet) 73.3 61.6 52.7 43.3 35.9 30.7 27.7 24.6 18.5
Deeplab v2 ASPP MS (ResNet) 73.9 66.9 60.9 54.1 47.9 43.2 39.2 35.7 28.5
PSPNet (ResNet) 75.9 66.8 59.0 48.9 39.8 33.8 29.2 26.7 21.2
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Table 6.8: The absolute IoU on the Pascal VOC dataset for various models when attacked
with FGSM ll. This is evaluated for eight different values of the `∞ norm of the perturbation,
ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

SegNet (VGG) 43.0 36.2 27.4 17.6 11.4 8.3 6.7 5.4 4.1
Deeplab v2 ASPP (VGG) 66.9 61.5 52.3 34.6 17.3 9.5 7.0 6.1 5.6
Dilated Frontend (VGG) 67.1 61.6 51.9 35.8 19.1 10.6 6.6 5.5 4.4
FCN8s (VGG) 68.7 61.5 52.5 38.6 24.4 15.5 11.4 8.8 6.2
FCN8s (ResNet) 68.8 58.7 52.9 47.7 43.6 41.0 36.8 28.6 13.6
Dilated Context (VGG) 70.4 61.7 50.5 32.5 16.5 9.4 6.6 5.6 4.3
Deeplab v2 ASPP (ResNet) 73.3 67.8 60.4 49.1 37.5 30.0 25.7 22.0 17.2
Deeplab v2 ASPP MS (ResNet) 73.9 71.5 67.4 59.5 48.4 38.0 31.1 25.8 20.4
PSPNet (ResNet) 75.9 69.8 62.1 51.8 41.8 36.2 32.1 29.8 26.6

Table 6.9: The absolute IoU on the Pascal VOC dataset for various models when attacked
with Iterative FGSM. This is evaluated for eight different values of the `∞ norm of the
perturbation, ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

SegNet (VGG) 43.0 34.3 29.9 20.8 12.1 5.9 3.1 2.2 1.9
Deeplab v2 ASPP (VGG) 66.9 55.5 45.8 31.3 17.6 8.2 4.1 3.0 2.3
Dilated Frontend (VGG) 67.2 57.5 48.8 32.6 16.3 7.9 4.3 3.2 2.2
FCN8s (VGG) 68.7 57.7 49.7 34.7 20.5 10.1 5.1 2.9 2.3
FCN8s (ResNet) 68.8 57.2 54.6 42.5 24.8 13.9 6.3 3.9 2.6
Dilated Context (VGG) 70.4 58.2 49.4 33.4 20.9 13.3 7.1 5.5 4.0
Deeplab v2 ASPP (ResNet) 73.3 64.3 55.1 38.0 22.4 11.9 6.4 4.2 2.9
Deeplab v2 ASPP MS (ResNet) 73.9 67.6 63.9 47.6 35.0 21.6 14.5 10.6 9.3
PSPNet (ResNet) 75.9 69.0 61.5 40.7 20.1 7.9 3.1 1.6 1.0
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Table 6.10: The absolute IoU on the Pascal VOC dataset for various models when attacked
with Iterative FGSM ll. This is evaluated for eight different values of the `∞ norm of the
perturbation, ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

SegNet (VGG) 43.0 35.9 28.4 16.3 9.3 5.8 3.7 3.0 2.9
Deeplab v2 ASPP (VGG) 66.9 61.9 53.2 32.3 17.3 8.9 5.1 4.4 3.2
Dilated Frontend (VGG) 67.2 62.3 52.7 33.9 16.1 8.0 4.8 3.9 3.5
FCN8s (VGG) 68.7 61.3 51.7 32.6 17.5 11.7 7.9 5.4 4.4
FCN8s (ResNet) 68.8 58.3 53.8 41.3 29.3 16.7 9.1 5.2 3.2
Dilated Context (VGG) 70.4 57.8 48.9 35.1 19.6 10.6 5.6 3.7 3.4
Deeplab v2 ASPP (ResNet) 73.3 67.8 59.2 40.4 21.4 11.4 6.2 5.4 4.5
Deeplab v2 ASPP MS (ResNet) 73.9 72.3 70.0 58.2 38.0 19.0 8.0 5.0 4.2
PSPNet (ResNet) 75.9 69.4 60.7 40.7 21.8 12.0 5.0 2.1 0.7

Table 6.11: The absolute IoU on the Cityscapes dataset for various models when attacked
with FGSM. This is evaluated for eight different values of the `∞ norm of the perturbation,
ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

ENet 53.4 39.6 35.6 31.0 24.0 13.2 5.8 4.1 1.4
ICNet 56.5 47.0 41.3 35.5 28.5 16.8 4.5 2.4 0.8
FCN8 (VGG) 62.1 46.0 38.0 31.9 27.8 23.9 16.2 7.7 3.9
Dilated Frontend (VGG) 59.0 46.3 38.1 31.1 25.7 20.7 13.3 5.0 1.7
Dilated Context (VGG) 62.3 48.4 39.0 31.6 26.0 20.8 13.3 4.8 1.8
PSPNet (ResNet) 74.4 58.5 52.9 48.9 46.0 36.3 16.0 2.8 1.9

Table 6.12: The absolute IoU on the Cityscapes dataset for various models when attacked
with FGSM ll. This is evaluated for eight different values of the `∞ norm of the perturbation,
ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

ENet 53.4 38.5 31.7 24.2 17.0 8.9 4.3 3.8 1.4
ICNet 56.5 47.2 40.5 33.2 25.1 13.4 3.4 2.3 0.8
FCN8 (VGG) 62.1 53.8 46.0 38.4 32.5 26.3 14.9 6.4 3.8
Dilated Frontend (VGG) 59.0 50.9 42.0 32.8 24.6 16.8 8.7 3.1 1.7
Dilated Context (VGG) 62.3 53.2 42.5 31.8 22.8 15.1 8.2 3.0 1.7
PSPNet (ResNet) 74.4 64.9 59.1 55.0 51.3 39.5 16.5 2.8 1.9
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Table 6.13: The absolute IoU on the Cityscapes dataset for various models when attacked
with Iterative FGSM. This is evaluated for eight different values of the `∞ norm of the
perturbation, ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

ENet 53.4 38.2 33.1 22.1 12.2 5.7 3.1 2.3 2.1
ICNet 56.5 45.8 38.8 28.6 16.6 9.7 7.3 2.5 0.9
FCN8 (VGG) 62.1 47.2 38.9 26.2 13.4 6.4 3.7 2.6 2.2
Dilated Frontend (VGG) 59.0 46.8 38.1 24.9 12.5 5.8 3.2 2.4 2.1
Dilated Context (VGG) 62.3 49.6 40.6 26.2 12.7 5.8 3.1 2.2 2.0
PSPNet (ResNet) 74.4 58.2 50.7 35.2 20.1 8.9 4.8 3.3 2.7

Table 6.14: The absolute IoU on the Cityscapes dataset for various models when attacked
with Iterative FGSM ll. This is evaluated for eight different values of the `∞ norm of the
perturbation, ε. ε = 0 represents the IoU on clean inputs.

Network `∞ norm of perturbation, ε
0 0.25 0.5 1 2 4 8 16 32

ENet 53.4 36.6 30.1 21.6 11.4 5.5 3.1 2.1 1.8
ICNet 56.5 45.8 38.8 28.6 16.6 9.7 7.3 2.5 0.9
FCN8 (VGG) 62.1 52.4 43.5 28.5 14.6 8.6 5.4 4.1 3.6
Dilated Frontend (VGG) 59.0 50.2 40.4 26.2 11.3 7.6 4.5 3.7 3.1
Dilated Context (VGG) 62.3 52.3 41.4 25.4 11.4 6.1 3.3 2.2 2.0
PSPNet (ResNet) 74.4 63.8 57.1 41.8 28.6 16.8 9.3 5.3 4.4
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6.D Multiscale Processing and Transferability of Adversarial Ex-
amples

This section details additional results with both Deeplab v2 and FCN8s.

6.D.1 Deeplab v2

Table 6.15 shows the performance, measured in IoU, on the VOC validation set when the
input image is processed at different resolutions (50%, 75%, 100%). The fact that a different
IoU is obtained for each input resolution, even though the weights of the network are the
same, confirms that the network is not scale invariant. Note that the version of Deeplab
which processes images at all the aforementioned resolutions, and max-pools the prediction
at each pixel obtains the highest IoU. An alternative to max-pooling the predictions from
each scale is to average-pool them. This method gives an insignificant improvement in
accuracy, but does improve robustness as shown in Fig. 6.16.

Table 6.15: Performance of Deeplab v2 (ResNet) on the VOC validation set when processing
images at different resolutions.

Model Name IoU [%]

Deeplab v2 50% scale 67.8
Deeplab v2 75% scale 71.9
Deeplab v2 100% scale 73.3

Deeplab v2 100% scale (average pooling) 73.4
Deeplab v2 Multiscale (max pooling) 73.9

6.D.1.1 Average-pooling instead of max-pooling

As shown in Fig. 6.16, average-pooling the results from each scale is also more robust to all
the adversarial attacks we tested compared to the single-scale version of Deeplab v2. In
fact, multiscale processing (either max- or average-pooling) achieves a higher IoU Ratio at
almost all ε values for each attack.

Table 6.17 also shows that black-box attacks generated from multiscale-averaging also
transfer better to single scales of Deeplab v2, for all four adversarial attacks considered in
this paper. This is similar to the case of max-pooling as shown in the main paper.

6.D.1.2 Transferability experiments using the FGSM ll and Iterative FGSM attacks

Table 6.18 shows the transferability of adversarial attacks to different scales of Deeplab v2
using the FGSM ll and Iterative FGSM attacks. The main paper presented results using the
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(a) Untargeted attacks (b) Targeted attacks

Figure 6.16: Adversarial robustness of Deeplab ASPP (single-scale) and Deeplab Multiscale
ASPP. We compare two types of multiscale ensembling – max-pooling and average-pooling
the predictions from each of the three scales of Deeplab v2 (ResNet 101). Note that both
average- and max-pooling are more robust than just a single-scale model, achieving higher
IoU Ratios for almost every ε value for each attack on the Pascal VOC dataset.

Table 6.16: Performance of FCN8s when processing images at different resolutions. As with
Deeplab v2, max-pooling the predictions from multiple scales achieves the best results.

Model Name IoU [%]

FCN8s 50% scale 60.8
FCN8s 75% scale 67.8
FCN8s 100% scale 68.7

FCN8s Multiscale 69.9

FGSM and Iterative FGSM ll attacks. However, our findings remain consistent on these
different attacks. The multiscale version of Deeplab v2 is the most robust to these attacks
(as also seen in Fig. 6.14 and 6.16), and black-box attacks from it transfer the best to other
scales of Deeplab v2.

6.D.1.3 Transferability experiments at multiple ε values

Figure 6.17 shows the results of black-box attacks for multiple ε values between different
scales of Deeplab v2 for the FGSM attack. The results are largely consistent with those at
ε = 8 as reported in the main paper – the multiscale version of Deeplab v2 is the most robust
to white-box attacks and black-box attacks generated from it transfer the best to other scales
of Deeplab v2. Also note how the transferability from each scale to another varies greatly.
For example, attacks generated from the 50% scale transfer very poorly to 100% and vice
versa.
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Table 6.17: Transferability of adversarial examples generated from different scales of Deeplab
v2 (columns) and evaluated on different networks (rows). In this case, the outputs from
each scale are average-pooled instead of max-pooled. The underlined diagonals for each
attack show white-box attacks. Off-diagonals, show transfer (black-box) attacks. The most
effective one in bold, is typically from the multiscale version of Deeplab v2. In the case of
Iterative FGSM ll, black-box attacks from the multiscale networks are sometimes even more
effective than white-box ones.

Network evaluated FGSM (ε = 8) Iterative FGSM ll (ε = 8)
50% 75% 100% Multiscale 50% 75% 100% Multiscale

Deeplab v2 0.5 (ResNet) 37.3 70.5 84.8 48.8 18.0 92.0 96.9 12.1
Deeplab v2 0.75 (ResNet) 85.5 39.7 62.2 54.2 99.5 17.9 89.9 17.4
Deeplab v2 1 (ResNet) 93.6 57.9 37.7 51.7 100.0 79.0 15.5 9.6
Deeplab v2 Multiscale (ResNet) 75.1 54.2 59.0 51.6 95.2 84.9 87.5 16.7

Network evaluated FGSM ll (ε = 8) Iterative FGSM (ε = 8)
50% 75% 100% Multiscale 50% 75% 100% Multiscale

Deeplab v2 50% (ResNet) 36.4 70.1 83.7 36.6 21.3 90.9 97.0 37.3
Deeplab v2 75% (ResNet) 89.9 37.4 61.6 39.9 99.1 20.0 88.6 44.1
Deeplab v2 100% (ResNet) 95.1 58.3 35.1 36.9 100.2 71.9 18.6 33.5
Deeplab v2 Multiscale (ResNet) 96.0 91.4 94.7 38.2 94.5 76.2 86.5 37.7

6.D.2 FCN8s

Table 6.16 shows the IoU of FCN8s (VGG) as the input resolution of the image is varied from
the VOC dataset. As with Deeplab v2, a multiscale version which max-pools the predictions
from each scale achieves the highest IoU.

The transferability experiments from Section 6 of the paper are repeated on FCN8 in
Tables 6.19 and 6.20. Note that FCN8s has not been trained in a multiscale manner as
Deeplab v2, and it is rather done as a post-processing step. Nevertheless, the results show a
similar trend as Deeplab v2: The multiscale network is more robust to white-box attacks and
black-box attacks generated from it transfer better. This suggests that training the network
in a multiscale manner does not confer robustness to adversarial examples. Rather it is the
fact that CNNs are not scale invariant, and that adversarial examples generated at one scale
are not as malignant at another. Finally Fig. 6.18 shows the transferability experiments at
multiple ε values, as was done for Deeplab v2 in the previous subsection.
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Table 6.18: Transferability of adversarial examples generated from different scales of Deeplab
v2 (columns) and evaluated on different networks (rows). As with the main paper, max-
pooling is performed from the output of each scale. However, in contrast to the main paper,
the FGSM ll and Iterative FGSM attacks are reported. The underlined diagonals for each
attack show white-box attacks. Off-diagonals, show transfer (black-box) attacks. The most
effective one in bold, is typically from the multiscale version of Deeplab v2.

Network evaluated FGSM ll (ε = 8) Iterative FGSM (ε = 8)
50% 75% 100% Multiscale 50% 75% 100% Multiscale

Deeplab v2 0.5 (ResNet) 36.4 70.1 83.7 46.0 21.3 90.9 97.0 39.2
Deeplab v2 0.75 (ResNet) 89.9 37.4 61.6 43.3 99.1 20.0 88.6 34.0
Deeplab v2 1 (ResNet) 95.1 58.3 35.1 33.9 100.2 71.9 18.6 22.0
Deeplab v2 Multiscale (ResNet) 90.7 60.8 68.9 42.1 96.5 81.9 87.5 29.2

Deeplab v2 (VGG) 95.1 69.9 63.8 61.9 98.5 86.9 86.3 81.2
FCN8 (VGG) 94.5 67.7 64.7 62.4 98.7 86.9 86.0 82.0

Table 6.19: Transferability of adversarial examples generated from different scales of FCN8s
(VGG) (columns) and evaluated on different networks (rows) on the Pascal VOC dataset.
For the multiscale network, the outputs from each scale are max-pooled. The underlined
diagonals for each attack show white-box attacks. Off-diagonals, show transfer (black-box)
attacks. The most effective one in bold, is typically from the multiscale version of FCN8s.

Network evaluated FGSM (ε = 8) Iterative FGSM ll (ε = 8)
50% 75% 100% Multiscale 50% 75% 100% Multiscale

FCN8 50% 32.1 53.3 81.0 53.7 20.5 87.3 96.9 21.9
FCN8 75% 78.4 30.9 45.5 40.5 96.3 17.6 77.8 20.5
FCN8 100% 94.0 41.7 28.9 28.7 98.2 58.6 15.3 17.5
FCN8 Multiscale 79.1 42.8 53.3 47.8 97.5 79.3 85.2 20.0

Table 6.20: Transferability of adversarial examples generated from different scales of FCN8s
(VGG) (columns) and evaluated on different networks (rows) on the Pascal VOC dataset.
For the multiscale network, the outputs from each scale are max-pooled. The underlined
diagonals for each attack show white-box attacks. Off-diagonals, show transfer (black-box)
attacks. The most effective one in bold, is typically from the multiscale version of FCN8s.

Network evaluated FGSM ll (ε = 8) Iterative FGSM (ε = 8)
50% 75% 100% Multiscale 50% 75% 100% Multiscale

FCN8 50% 18.5 51.4 79.2 24.0 23.6 85.7 97.1 38.1
FCN8 75% 80.9 18.5 37.0 23.4 97.3 15.9 74.7 28.1
FCN8 100% 93.0 33.8 16.6 17.1 99.1 54.9 14.7 18.1
FCN8 Multiscale 87.5 40.0 60.3 21.1 96.4 74.5 82.3 25.1
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(a) Transfer attacks on Deeplab v2 50% scale (b) Transfer attacks on Deeplab v2 75% scale

(c) Transfer attacks on Deeplab v2 100% scale (d) Transfer attacks on Deeplab v2 Multiscale (max-
pooling)

Figure 6.17: Black-box attacks on each scale of Deeplab v2, from each other scale, using
adversarial perturbations generated by FGSM for differing values of ε on the Pascal VOC
dataset. In each figure, the last bar shows the “white-box” attack on the network, where
the attack is generated from the network that is being evaluated. This is typically the most
powerful attack, as expected. Note that attacks generated from the multiscale version of
Deeplab v2 (using either max- or average-pooling) produce the most effective black-box
attacks across multiple ε values. The trend from the main paper, which only tabulated the
IoU Ratio for ε = 8, can thus be seen across all other ε values considered in this paper.
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(a) Transfer attacks on FCN8s 50% scale (b) Transfer attacks on FCN8s 75% scale

(c) Transfer attacks on FCN8s 100% scale (d) Transfer attacks on FCN8sMultiscale (max-pooling)

Figure 6.18: Black-box attacks on each scale of FCN8, from each other scale, using adversarial
perturbations generated by FGSM for differing values of ε on the Pascal VOC dataset. In
each figure, the last bar shows the “white-box” attack on the network, where the attack is
generated from the network that is being evaluated. The results from this experiment are
very similar to Deeplab v2 – attacks generated from the multiscale network transfer the best
to other scales. However, unlike Deeplab v2, the FCN8s network in this case was not trained
with multiscale ensembling. This was simply done at test-time. This suggests that the
increased robustness of multiscale networks to adversarial attacks, and their transferability
to other networks, is not a result of the training procedure, but rather the fact that these
networks are not scale invariant.
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6.E Effect of CRFs on Adversarial Robustness

6.E.1 Adversarial Robustness and Smoothing

The pairwise term of DenseCRF [154] (which is interpreted as a neural network in CRF-RNN
[329]) takes the form of a weighted sum of a Bilateral and Gaussian filter,

ψp(xi, xj) = µ(xi, xj)

[
w1 exp

(
|pi − pj |2

θα
+
|Ii − Ij |2

θβ

)
+ w2 exp

(
|pi − pj |2

θγ

)]
. (6.8)

Increasing θα, θβ , θγ , w1 and w2 all correspond to favouring smoother predictions. The
compatibility function, µ(xi, xj), is given by the Potts model, and is equal to 1 if xi 6= xj and
0 otherwise [154].

Figure 6.19 shows the effect of varying θα, Fig. 6.20 the effect of varying θβ and Fig. 6.21
the effect of varying both θγ andw2. Note that in all cases, each of the other hyperparameters
remains unchanged at the values from the public CRF-RNN model.

In all of these cases, we can see that increasing the smoothness does not correspond
to increasing adversarial robustness to the FGSM attack. Rather, as detailed in the next
subsection, there is a correlation between the confidence of the prediction and robustness to
the FGSM attack.

6.E.2 Results about the confidence on VOC

We empirically measured the confidence of the predictions of CRF-RNN. This was done by
recording the probability (from the softmax activation function) of the predicted (highest-
scoring) label, and also by calculating the entropy of the marginal distribution over labels at
each pixel in the image. A lower entropy indicates a more certain or confident prediction.
This was then averaged over the Pascal VOC validation set.

Figures 6.22 and 6.23 show the mean confidence and entropy respectively as a function
of the IoU Ratio. This is done for the FGSM attack for all the ε values considered in the paper.
There is a clear correlation between the IoU Ratio and the confidence of the prediction.
Moreover, the results of CRF-RNN are always more confident than FCN8s. Note that
multiple variants of CRF-RNN, using different θα, θβ and θγ hyperparameter values were
considered, as in Figures 6.19 through 6.21.

6.E.3 Experiments on Deeplab v2 with CRF

In contrast to CRF-RNN [329], a common approach is to apply CRFs as a post-processing
step, as done in Deeplab [43]. We perform adversarial attacks on this by appending the
CRF-RNN layer of [329] onto theDeeplab v2 network. This allows us to compute the gradient
of the loss with respect to the input image (required for all the attacks) by backpropagating
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through the CRF-RNN layer. The parameters of the CRF-RNN layer appended to Deeplab
v2 were manually set to the parameters used by the original authors10 (who obtained them
via cross-validation). Note that appending the CRF-RNN layer to Deeplab v2 and using the
same parameters as the authors produces output that is identical to the post-processing
code used by the original authors. The difference is that this allows us to compute gradients
as well.

Figure 6.19: The IoU Ratio of CRF-RNN for various values of the θα (filter bandwidth)
hyperparameter when attacked with FGSM on the Pascal VOC dataset. Increasing this
hyperparameter visually smoothes the result further, but we can see that this does not
increase adversarial robustness. In fact, lower filter bandwidths of approximately θα = 1
provide more robustness.

10http://liangchiehchen.com/projects/DeepLabv2_resnet.html
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Figure 6.20: The IoU Ratio of CRF-RNN for various values of the θβ (filter bandwidth)
hyperparameter when attacked with FGSM on the Pascal VOC dataset. Again, we can see
that larger filter bandwidths, which encourage more spatial smoothness, do not increase
adversarial robustness.

Figure 6.21: The IoU Ratio of CRF-RNN for various values of the w2 and θγ parameters
when attacked with FGSM on the Pascal VOC dataset. Increasing the weight of the Gaussian
term (w2) tends to increase robustness. However, we still see that lower filter bandwidths
(θγ) tend to provide more robustness.
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Figure 6.22: The mean probability of the highest-scoring class for each pixel, averaged over
the Pascal VOC validation set. This is performed for the FGSM attack for multiple ε values.
ε = 0 corresponds to clean inputs (no adversarial attack). Note how FCN8s (the purple dot)
consistently has the lowest mean probability. This probability is significantly lower than
other variants of CRF-RNN (with varying θα, θβ , θγ), shown by the other coloured dots.
Moreover, note the correlation between the confidence in the prediction, and adversarial
robustness to the FGSM attack. Additionally, the probability of the predicted class remains
high (above 90%) for all models throughout all adversarial attacks.
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Figure 6.23: The mean entropy of the marginal distribution over all labels at each pixel,
averaged over all images in the Pascal VOC validation set. A lower entropy corresponds to a
more confident prediction. This is performed for the FGSM attack for multiple ε values.
ε = 0 corresponds to clean inputs (no adversarial attack). Note how FCN8s (the purple dot)
consistently has the highest mean entropy (least confidence). This entropy is significantly
higher than other variants of CRF-RNN (with varying θα, θβ , θγ), shown by the other
coloured dots. Moreover, note the correlation between the confidence in the prediction, and
adversarial robustness to the FGSM attack.
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Chapter 7

Conclusions

Chapter 3 of this integrated thesis first presented a method for the task of semantic
segmentation by integrating mean-field inference of a Conditional Random Field (CRF) with
higher order potentials directly into a deep neural network. This end-to-end trained network
achieved state-of-the-art results at the time of publication. Chapter 4 then extended this
network to perform the task of instance segmentation. In contrast to previous approaches,
this method jointly predicted all object instances in the image and thus does not predict
overlapping instances. Moreover it can naturally deal with “stuff” classes as well. The fact
that pixel-accurate training data for segmentation models is time-consuming and expensive
to obtain was addressed in Chapter 5 which presented a method of training the instance
segmentation model from the previous chapter with weaker annotations in the form of
bounding boxes and image-level tags. Finally, motivated by the fact that segmentation
systems are now becoming accurate enough to use in real-world applications, Chapter 6
studied the adversarial robustness of different segmentation architectures. The findings
from this chapter improve our understanding of adversarial examples and will help future
efforts to train models that are both accurate and robust to adversarial attacks.

Section 7.1 now summarises contributions of each of the four papers presented in this
thesis, and discusses subsequent advances in the field since publication, potential extensions
of the work and the impact the work had on the field. Thereafter, Sec. 7.2 discusses future
directions and open questions that were not considered in this thesis. Finally, concluding
remarks are presented in Sec. 7.3.

7.1 Discussion of contributions

Chapter 3: Higher Order Conditional Random Fields in Deep Neural Networks

Chapter 3 proposed a CRFwith higher order potentials for the task of semantic segmentation.
Mean-field inference of this CRFwas formulated as a recurrent neural network layer, enabling
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joint, end-to-end training of both the parameters of the CRF and the underlying CNN. At
the time of writing, it was the leading method on the public Pascal VOC benchmark, and
is currently still the second-best for methods using the VGG [267] backbone architecture.
Furthermore, this algorithm also obtained the highest performance on the Pascal Context
dataset.

The methods that initially outperformed the Higher Order CRF-CNN architecture used
a combination of the more powerful ResNet [117] backbone and CRFs [43, 40]. On a separate
track, Luc et al. [194] also proposed an alternate method of encouraging higher order
structural constraints using a generative adversarial network framework (the “generator”
was the segmentation network, and the “discriminator” judged whether the predicted
segmentation was “real” or “fake”).

However, more recently, state-of-the-art methods in semantic segmentation have not
been explicitly encouraging structure in the network’s output, but have rather designed
architectures for pixel-level prediction tasks [328, 48, 320]. Furthermore, neural networks
with attention modules [320, 92, 300], originating from natural language processing [293,
14], have been popular as well. In contrast to convolution operations which propagate
information in a fixed grid in each layer, attention-based methods are able to propagate
information throughout the image and thus model long-range interactions between pixels.
These messages, however, are learned automatically by a neural network from data and
conditioned on each input image. Densely connected pairwise potentials of a CRF (Eq. 2.11)
are also able to model long-range interactions, but the pairwise potential is based only on
positional and image-intensity features, and not learned features.

It is also worth noting that current state-of-the-art segmentation architectures are
dependent on using large batch sizes during training, as it enables better estimates of batch
statistics for batch normalisation [328, 45, 129]. For example, PSPNet [328] was trained
with 16 GPUs, with the batch statistics after each layer being synchronously aggregated
across the different GPUs. When training PSPNet with only a single GPU, performance
is about 5% lower. Therefore, understanding the effect of batch normalisation on training
and developing methods for training accurate models with lower hardware resources is an
important future avenue for research.

Although CRFs are currently not being used commonly in fully-supervised semantic
segmentation, the more general idea of interpreting inference algorithms as differentiable
operations which can be incorporated into neural networks has proven popular in multiple
domains. Examples include unrolled and differentiable versions of a primal-dual solver
for depth super-resolution [245], bundle adjustment [279], non-linear least squares [56],
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the “Deep matching” algorithm (which is not a neural network contrary to what the name
suggests) for optical flow estimation [280] and correlation filters for object tracking [291].

Chapter 4: Pixelwise Instance Segmentation with a Dynamically Instantiated
Network

Chapter 4 extended the semantic segmentation network from the previous chapter to
perform the task of instance segmentation. The formulation, which associated each pixel
with an object detection, had the advantage that it considered all object instances in the
image jointly, and did not allow one pixel to belong to multiple instances as in other related
algorithms [116, 65, 183]. Furthermore, the algorithm presented in Chapter 4 has no problem
in segmenting “stuff” [91] classes in contrast to detection-based approaches [116, 65, 183,
142].

At the time of publication, this method was the leading method on the public Cityscapes
benchmark [57], and also the Pascal VOC [81] and SBD datasets [110]. The subsequent
methods which have surpassed it on the Cityscapes benchmark [183, 116] have mostly been
detection-based approaches which output more instances than are actually present in the
image. Furthermore, the predicted instances are allowed to overlap each other. Public
benchmarks which use the AP r ranking metric are biased to such approaches and do not
require one pixel to be assigned to only one instance.

The fact that the instance segmentation literature broadly consists of two approaches –
firstly, methods which assign an instance identifier to each pixel in the image [9, 8, 15, 182,
143], and secondly, detection-based methods which produce a ranked list of instance masks
which can overlap each other [116, 65, 183, 111, 112] – has since also been noted by Kirilov
et al. [142]. To differentiate these approaches, Kirilov et al. have introduced the task of
“Panoptic Segmentation” [142] which does not allow overlaps, and requires one to segment
both “thing” and “‘stuff” classes.

The task of “Panoptic Segmentation” is indeedwhatwas being accomplished inChapter 4.
However, at the time of writing, this task was not considered as an independent scene
understanding problem. Furthermore, the “Panoptic Quality” (PQ) metric proposed by
[142] to evaluate the task of “Panoptic Segmentation” is the product of two terms – the
Segmentation Quality (SQ) and Detection Quality (DQ). Note that the “Segmentation
Quality” is actually the same as the “Matching IoU” used as an additional evaluation metric
in Chapter 4 and [317] before that.

One of the shortcomings of the algorithm presented in Chapter 4 was that it used a
separately trained object detector to provide inputs to the system. This problem has been
addressed in many recent works which train a multi-task network with a common-set of

165



7. Conclusions

layers, and separate “heads” for object detection and semantic segmentation [311, 141, 171,
236]. The current state-of-the-art approach for panoptic segmentation, UPSNet [311] follows
this multi-task training idea. Note that its “Panoptic head” is similar to the “Box term”
described in Chapter 4 and its Mask-RCNN head performs a similar function to the “Shape
term” used in Chapter 4.

Chapter 5: Weakly and Semi-supervised Panoptic Segmentation

This work extended the segmentation model from the previous chapter by showing how it
could be trained with weaker supervision using a method based on self-training and the
Expectation Maximisation (EM) algorithm. Instead of using full pixel-wise annotations,
which are expensive to collect, weaker annotations in the form of image-level tags and
bounding boxes were used. On the Cityscapes dataset, this corresponded to a reduction in
the annotation time (and hence cost) by a factor of 35. Even with this weaker supervision,
the weakly-supervised model could obtain up to 95% of fully-supervised performance with
the same data.

This paper remains, at the time of writing, the only approach to perform “panoptic
segmentation” without pixel-level annotations in the training data. Although this paper
uses the same model as Chapter 4, it refers to the task being performed as “panoptic
segmentation” as it was published subsequent to [142].

One of the weaknesses of the segmentation model is that it needs additional object
detections as its input. Consequently, the model cannot trivially be extended to perform
instance- or panoptic-segmentation from only image-level tags (the number of instances of
a particular class would also be required). It is however possible that the same self-training
procedure, outlined in this chapter, can be used for this scenario of only training with
image-level tags, although a different segmentation model would be needed.

Chapter 6: On the Robustness of Semantic SegmentationModels to Adversarial
Attacks

Chapter 6 presented a rigorous evaluation of the robustness of semantic segmentation
models to adversarial attacks. This chapter was motivated by the fact that during the course
of this thesis, the performance of semantic segmentation systems have rapidly improved to
the point that they are becoming suitable for use in real-world applications, where security
of machine learning systems are critical.

The chapter presented numerous observations that will facilitate future efforts in
understanding and defending against adversarial examples. In the shorter term, it showed
how to effectively benchmark adversarial robustness and suggested which models should
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currently be preferred in safety-critical applications due to their inherent robustness.
Furthermore, mean-field inference was shown to produce overconfident predictions and
naturally perform “gradient masking”, conferring robustness only to common untargeted
adversarial attacks. There were, however, no robustness benefits from the smoothness priors
enforced by the DenseCRF model.

At the time of writing the original conference paper, adversarial examples were attracting
attention in the computer vision community, and numerous defences to adversarial examples
had been proposed [176, 237, 270, 107, 308]. However, these have all since been subverted by
[11] and [286]. Chapter 6 also showed how concurrently proposed defences based on input
transformations [107, 308] were ineffectual if knowledge of these input transformations
was used to generate the attack. Input transformations could also be subverted if they
were stochastic and/or non-differentiable. Adversarial training [196] is the only method
which has increased the robustness of neural networks significantly in white-box settings.
However, adversarial training is not effective against adversarial attack algorithms that were
not used in training, and also comes at the cost of decreased accuracy on clean inputs.

Although several theoretical and empirical works [256, 96, 285, 272, 86, 84] have since
attempted to improve our understanding of adversarial examples and neural networks,
there is still currently no solution that both preserves predictive accuracy and is robust to
adversarial examples. Understanding and countering adversarial examples thus remain an
important and open research question.

7.2 Future directions and open questions

Incrementally learning new classes from few examples

The algorithms described in this thesis have considered datasets such as Cityscapes [57] and
Pascal VOC [81] which have 19 and 20 labelled classes respectively. However, an ideal scene
understanding system should be able to extend its capabilities after it has been trained, by
being able to learn to classify new object classes without degrading its performance on the
original classes it was trained on. Furthermore, it should be able to learn these new classes
from few training examples, assuming that these new classes are visually related to the
previous classes the system was trained on. Finally, training examples from the original
dataset should not be required when learning new classes.

Simply fine-tuning a network on examples of the new classes is not sufficient, as it results
in the performance on the original classes degrading severely. This outcome is known as
“catastrophic forgetting” [198, 197]. Although the problem of learning tasks sequentially
with neural networks without forgetting previous tasks has recently been studied, and
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known as continual- or incremental-learning [144, 240, 173], the field is not as mature as
other topics in computer vision.

Currently, methods for incremental learning still require some training examples from
the original dataset to prevent performance degradation, are not as accurate as standard
supervised learning on a single dataset and have not been demonstrated on more complex
scene understanding tasks such as segmentation and detection.

As a result, many practical applications – such as a robot which must quickly learn
environment-specific object models in addition to its default ones – are currently still not
possible despite the high performance of recent methods on benchmark datasets.

Model introspection

The neural networks in this thesis have been evaluated in “closed-world” settings where each
of the test examples has a ground truth label which the network was trained on. However,
such an evaluation protocol is not suitable for the “open-world” setting encountered in
practical applications where a scene understanding system may encounter an input that
does not belong to any of the categories that it was trained on. In such a situation, the
algorithms presented in this thesis will still incorrectly classify the input example into one
of the predefined object classes that it was trained on, and often with high confidence.

In the same situation, a scene understanding system should be able to identify that it is
likely to fail, and predict an “I don’t know” label, rather than one of the predefined labels
that it was trained with. Note that this situation can also arise when there is a significant
“domain gap” between the input example and the training data of the model. For example,
Zendel et al. [323] showed how semantic segmentation models trained on common road
scene datasets [57, 214] fail catastrophically in hazardous conditions (which were not in the
training set).

Training a classifier with an additional “I don’t know” class is not sufficient [27], as
training data for this additional class will be required (and by definition, the unknown
examples in the test set cannot be in the training set).

Robustness in open-world or out-of-domain scenarios is closely related to quantifying
the uncertainty in a network’s prediction [195, 93, 137], and is crucial for safety-critical
applications such as autonomous vehicles where fatalities can occur as a result of errors
made by the perception system [289].

Robust computer vision models

Chapter 6 investigated the vulnerability of common segmentation models to adversarial
attacks, and follows the adversarial example literature which considers perturbations with
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a constrained `p norm (typically l∞ or `2).
There are, however, many other transformations of an input example that neural networks

should be robust to. For example, Engstrom et al. [77] have shown that carefully chosen
rotations and translations are sufficient to fool neural network-based image classification
models (including adversarially trained [196] ones). Similarly, Hendrycks et al. [122] have
shown how a wide range of image corruptions also severely degrades the performance of
image classifiers.

Developing robust computer vision models for practical applications thus requires
considering more complex attack models than the ones currently used in the adversarial
attack literature.

Overcoming the “Curse of Dataset Annotation”

The deep neural networks used in this thesis require large amounts of training data to learn
powerful feature representations automatically. The dependence of neural networks on
large datasets has been termed by Xie et al. [310] as the “Curse of dataset annotation” due
to the cost incurred in creating labelled datasets, particularly for tasks such as semantic
segmentation.

Chapter 5 addressed this problem by using weaker annotations – in the form of
bounding boxes and image-level tags – for learning segmentation models. However, even
these annotations require significant human effort and cost to obtain.

A promising alternative is to create synthetic datasets which allow one to produce
effectively unlimited amounts of training data for free. This approach was demonstrated
by Richter et al. [244] and Dosovitskiy et al. [75] who utilised computer games and a
purpose-built simulator based on a computer game engine respectively.

However, models trained on only synthetic data to not generalise well to the real-
world due to the differences in the distribution of training and test data [244]. As a
result, effective domain adaptation methods [59] to adapt a model trained on simulated
data to the distribution of real-world data that it will ultimately be tested on remains an
important research direction. Furthermore, how to optimally generate synthetic data, given
a parametric simulator, for the task of interest is an interesting and open research question.

3D Scene Understanding

The algorithms in this thesis have considered 2D scene understanding tasks where each
pixel in the image is assigned a label. However, images are the result of projections of 3D
objects onto cameras. Therefore, a richer understanding of a scene could be obtained by
predicting 3D models of objects and the camera parameters that result in the observed 2D
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image being formed. This idea, of directly modelling and inverting the complex image
formation process, is also referred to as “vision- as inverse-graphics” [247, 158, 78, 307]. A
major benefit of performing 3D scene understanding is that traditional scene representations,
such as pixel-level segmentations, bounding boxes and depth maps can easily be produced
as a by-product by rendering the 3D model. Furthermore, it is also possible to model parts
of an object which are occluded in the 2D image.

“Vision as inverse-graphics” approaches have only recently been demonstrated on
real-world data [159, 26], and have fitted purpose-designed 3D models [190, 249] or
CAD models [41] of specific object classes (such as humans) to images. Scaling up these
approaches to the datasets considered in this thesis would also require efficient methods of
constructing 3D object models, or using high-dimensional volumetric representations of
objects. Furthermore, as it is not possible to obtain metric ground truth 3D information
outside of lab-controlled environments, such 3D scene understanding models have to be
trained with weaker supervision. For example, 2D segmentation masks or keypoints can be
used as weak supervision since the rendering of the 3D model onto 2D should match the
segmentation mask.

Unified models for scene understanding

Scene understanding consists of many different problems (Sec. 1.1) which are typically
solved independently of one another, even though these problems are highly related. For
example, in Chapter 4 and 5, a separate object detector was used to solve the task of
instance/panoptic segmentation.

An obvious goal is thus to perform multiple scene understanding tasks with a single,
unified model. In addition to reducing the computational cost of performing multiple tasks
individually, such a unified model should also be able to exploit the synergies between
different tasks so that it performs better than a specialised, task-specific model.

This goal has been pursued by Kokkinos [150] by training a multi-task neural network
with a common set of layers followed by individual “heads” for each task. However,
performance on each task deteriorated as more tasks were added, meaning that separate,
task-specific models were more accurate than a single, multi-task one.

7.3 Concluding remarks

The widespread adoption of deep neural networks, and availability of large datasets and
computing power has facilitated great advances in computer vision in the last few years.
For example, the state-of-the-art approach for semantic segmentation on the Pascal VOC
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benchmark before the use of deep learning obtained an IoU of 47.8% [37]. The method
presented in Chapter 3 achieved 77.9% which was the best at the time. The current leading
approach now achieves 88.5% [48].

However, as discussed in the previous section (Sec. 7.2), there are still many open
questions to be solved, which may require new problem formulations, new datasets and
new evaluation metrics as more challenging problems are considered. Further advances in
these areas will bring us closer to computers that understand our physical world and help
enrich it.
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