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Abstract. Pixel-level labelling tasks such as semantic segmentation have witnessed significant progress recently5
due to the deep learning paradigm. Many state-of-the-art structured prediction methods also include6
a random field model with a hand-crafted Gaussian potential to model spatial priors, label consis-7
tencies and feature-based image conditioning. These random field models with image conditioning8
typically require computationally demanding filtering techniques during inference. In this paper, we9
present a new inference and learning framework which can learn arbitrary pairwise CRF potentials.10
Both standard spatial and high-dimensional bilateral kernels are considered. In addition, we intro-11
duce a new type of potential function which is image-dependent like the bilateral kernel, but an order12
of magnitude faster to compute since only spatial convolutions are employed. It is empirically demon-13
strated that such learned potentials can improve segmentation accuracy and that certain label-class14
interactions are indeed better modelled by a non-Gaussian potential. Our framework is evaluated15
on several public benchmarks for semantic segmentation with improved performance compared to16
previous state-of-the-art CNN+CRF models.17
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1. Introduction. Markov Random Fields (MRFs), Conditional Random Fields (CRFs)20

and more generally, probabilistic graphical models are a ubiquitous tool used in a variety of21

domains spanning Computer Vision, Computer Graphics and Image Processing [32, 9, 4]. In22

this paper, we focus on the application of MRFs for Computer Vision problems involving23

per-pixel labelling such as image segmentation. There are many successful approaches in this24

line of research, such as the interactive segmentation of [42] using graph cuts and the semantic25

segmentation works of [34, 45] where the parallel mean-field algorithm was applied for fast26

inference. Recently, Convolutional Neural Networks (CNNs) have dominated the field in a27

variety of recognition tasks [27, 44, 41]. However, we observe that several leading segmentation28

approaches still include CRFs, either as a post-processing step [14, 15, 24, 13], or as part of29

the deep neural network itself [48, 37, 3, 39, 31, 47].30

We also leverage this idea of embedding inference of graphical models into a neural net-31

work. An early example of this idea was presented in [12] where the authors back propagated32

through the Viterbi algorithm when designing a document recognition system. Similar to33

[48, 3, 6, 47], we use a recurrent neural network to unroll the iterative inference steps of a34

CRF. This was first used in [48] and [43] to imitate mean-field inference and to train a fully35
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convolutional network [40, 14] along with a CRF end-to-end via back propagation. In contrast36

to mean field, we do not optimize the KL-divergence between the true probability distribu-37

tion and a fully-factorised approximation. Instead, we use a gradient descent approach for38

the inference that directly minimizes the Gibbs energy of the random field and hence avoids39

the approximations of mean-field. A similar framework was recently suggested in [6] and the40

followup work [7] for multi-label classification problems in machine learning with impressive41

results. Moreover, [20, 2] have recently shown that one can obtain lower energies compared42

to mean-field inference using gradient descent based optimization schemes.43

In many works, the pairwise potentials consist of parameterized Gaussians [33, 48, 3]44

and it is only the parameters of this Gaussian which are learned. Our framework can learn45

arbitrary pairwise potentials which need not be Gaussian. In [16], a general framework for46

learning arbitrary potentials in deep structured model was proposed based on approximate47

ML learning. One of the advantages with that framework is that data likelihood is maximized48

in the learning process. However, this involves approximating the partition function which is49

otherwise intractable. This hinders the handling of large structured output spaces like in our50

case.51

Another approach to learning arbitrary pairwise potentials was presented in [31] which52

uses Gibbs sampling. Again they struggle with the difficulty of computing the partition53

function. In the end, only experiments on synthetic data restricted to learned 2D potentials54

are presented.55

The authors of [37] and [13] also learn arbitrary pairwise potentials to model contextual56

relations between parts of the image. However, their approaches still perform post-processing57

with a CRF model with parametric Gaussian potentials. In [29], a pairwise potential is learned58

based on sparse bilateral filtering. Applying such a filter can be regarded as one iteration in59

the CRF inference step. In [29], the bilateral filter is applied twice, mimicking the first two60

iterations of inference. Our method is not restricted to a limited number of iterations. Per-61

haps more importantly is that we not only learn sparse high-dimensional bilateral filters, but62

also learn arbitrary spatial filters. Such spatial 2D potentials are computationally much more63

efficient and easier to analyze and interpret compared to their high-dimensional counterparts.64

We also note that [21] proposed back propagating through mean-field inference to learn pa-65

rameters. However, this was not in the context of neural networks as in the aforementioned66

approaches and our work. For pixel-labelling tasks, we focus on discrete random fields. We67

note that learning arbitrary pairwise potentials for deep structured models with continuous68

valued output variables has recently been explored by [47].69

A major drawback with using image dependent dense CRFs is the relatively high compu-70

tation cost. Calculating the contribution of a bilateral kernel requires a filtering operation in71

5D-space. Something that is very computationally expensive, even utilizing sophisticated ap-72

proximate filtering techniques such as the permutohedral lattice filtering technique [1]. Since73

the image dependent CRF usually performs very well, especially when it comes to aligning74

object boundaries in segmentation tasks, it is still used for these tasks. In this paper we also75

propose an alternative CRF model which is also image dependent but only requires 2D convo-76

lutions during inference. The image dependence of the model comes from a output map of the77

base CNN that acts as a ”filter selection” map. This enables the model to, for example, use78

one filter representing pairwise interaction between pixel labels at semantic edges and another79
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filter far away from semantic edges.80

Previous approaches trying to find alternatives to the computation heavy bilateral CRF81

include [17] where they use discriminatively trained domain transform as an edge-preserving82

filtering method. The authors show that the domain transform can be applied as a Recurrent83

Neural Network (RNN) applied across the image across all directions. Another example is [8]84

where they add a final layer that performs random graph walk across the image refining the85

segmentation.86

In summary, our contributions are as follows.87

• We present a new model for a pairwise CRF potential which is image-dependent like88

the bilateral kernel, but does not require high-dimensional filtering. It is based on a89

learned 2D filter bank which makes both inference and learning an order of magnitude90

faster than high-dimensional filtering approaches.91

• We introduce a new optimization method for CRF inference based on gradient descent92

that enables end-to-end training.93

• We show that our inference method supports learning pairwise kernels of arbitrary94

shape. The learned kernels are empirically analyzed and it is demonstrated that in95

many cases non-Gaussian potentials are preferred.96

Our framework has been implemented in Caffe [30] and all source code is publicly avail-97

able to facilitate further research. 198

2. CRF Formulation. Consider a Conditional Random Field over N discrete random99

variables X = {X1, ..., XN} conditioned on an observation I and let G = {V, E} be an100

undirected graph whose vertices are the random variables {X1, ..., XN}. Each random vari-101

able corresponds to a pixel in the image and takes values from a predefined set of L labels102

L = { 0, ..., L− 1 }. The pair (X , I) is modelled as a CRF characterized by the Gibbs distri-103

bution104

(2.1) P (X = x|I) =
1

Z(I)
exp(−E(x|I)),105

where E(x|I) denotes the Gibbs energy function with respect to the labeling x ∈ LN and106

Z(I) is the partition function. To simplify notation the conditioning on I will from now on107

be dropped. The MAP inference problem for the CRF model is equivalent to the problem of108

minimizing the energy E(x). In this paper, we only consider energies containing unary and109

pairwise terms. The energy function can hence be written as110

(2.2) E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xi, xj)111

where ψi : L → R and ψij : L × L → R are the unary and pairwise potentials, respectively.112

We now describe these potentials before discussing inference in Sec. 3.113

2.1. Potentials. The unary potential ψi(xi) specifies the energy cost of assigning label xi114

to pixel i. In this work we obtain our unary potentials from a CNN. Roughly speaking, the115

1https://github.com/maunzzz/caffe-crfgd

This manuscript is for review purposes only.

https://github.com/maunzzz/caffe-crfgd


4 M. LARSSON, A. ARNAB, S. ZHENG, P. TORR AND F. KAHL

CNN outputs a probability estimate of each pixel containing each class. Denoting the output116

of the CNN for pixel i and class xi as zi:xi , the unary potential is117

(2.3) ψi(xi) = −wu log(zi:xi + ε)118

where wu is a parameter controlling the impact of the unary potentials, and ε is introduced119

to avoid numerical problems.120

The pairwise potential ψij(xi, xj) specifies the energy cost of assigning label xi to pixel i121

while pixel j is assigned label xj . Introducing pairwise terms in our model enables us to take122

dependencies between output variables into account. We consider two alternative types, the123

combined and the filterbank versions.124

2.1.1. Combined. The combined version has pairwise potentials that consist of a sum of125

one spatial term and one bilateral term. It has the following form126

(2.4) ψij(xi, xj) = kspatialxi,xj (pi − pj) + kbilateralxi,xj (fi − fj)127

Here kspatialxi,xj denote a spatial kernel with compact support. Its value depends on the relative128

position coordinates pi − pj between pixels i and j. We do not restrict these spatial terms to129

any specific shape. However we restrict the support of the potential meaning that if pixels i130

and j are far apart, then the value of kspatialxi,xj (pi − pj) will be zero. We choose to use spatial131

kernels with compact support in contrast to the commonly used dense Gaussian potential since132

this allows the inference calculations to be performed using standard 2D convolutions. The133

CRFs with Gaussian potentials do not in theory have compact support, and therefore, they134

are often referred to as dense. However, in practice, the exponential function in the kernel135

drops off quickly and effectively, the interactions between pixels far apart are negligible.136

The term kbilateralxi,xj is a bilateral kernel which depends on the feature vectors fi and fj137

for pixels i and j, respectively. Following several previous works on random fields, we let138

the vector depend on pixel coordinates pi and RGB values associated to the pixel, hence fi139

is a 5-dimensional vector. Note that for both the spatial and the bilateral kernels, there is140

one kernel for each label-to-label (xi and xj) interaction to enable the model learn differently141

shaped kernels for each of these interactions.142

2.1.2. Filterbank. The pairwise potentials of the filterbank version has the following form143

(2.5) ψij(xi, xj) =
F∑
f=1

gf (pi, I)kspatialxi,xj ,f
(pi − pj),144

where kspatialxi,xj ,f
denote a spatial kernel with compact support similar to the case of the combined145

version. The weights gf depends both on the position of the pixel as well as the image I.146

These weights are taken as the output of a CNN. Hence, this gives rise to an image-dependent147

potential, but one only needs convolve with a bank of F 2D filters to evaluate it during148

inference. For example, the CNN outputting the weights can learn to detect semantic edges149

meaning that we would apply a different spatial filter close to a semantic edge than at the150

center of an semantic object. Setting the last layer of the CNN as a softmax the features gf151

act as ”filter selectors” deciding how the several 2d-filters describing the pairwise term should152

be weighted for each pixel individually.153
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2.2. Multi-label Graph Expansion and Relaxation. To be able to explain our inference154

method we reformulate the original minimization of E(x) as a real-valued optimization prob-155

lem. To facilitate a continuous relaxation of the energy minimisation problem we start off by156

expanding our original graph in the following manner. Each vertex in the original graph G will157

now be represented by L vertices Xi:λ, λ ∈ L. In this way, an assignment of labels in L to each158

variable Xi is equivalent to an assignment of boolean labels 0 or 1 to each node Xi:λ, whereby159

an assignment of label 1 to Xi:λ means that in the multi-label assignment, Xi receives label160

λ. To ensure that only one label is assigned to each node, an additional constraint is needed161

saying that, for each i, only one of Xi:λ are allowed to be labeled 1. This enables to rewrite162

the energy minimization problem minE(x) as the following equivalent integer program163

(2.6)

min
∑

i∈V,λ∈L
ψi(λ)xi:λ +

∑
(i,j)∈E
λ,µ∈L

ψij(λ, µ)xi:λxj:µ

s.t. xi:λ ∈ {0, 1} ∀i ∈ V, λ ∈ L∑
λ∈L

xi:λ = 1 ∀i ∈ V.

164

As a next step, we relax the integer program by allowing real values on the unit interval165

[0, 1] instead of booleans only. We denote the relaxed variables qi:λ ∈ [0, 1]. We can now write166

our problem as a quadratic program167

(2.7)

min
∑

i∈V,λ∈L
ψi(λ)qi:λ +

∑
(i,j)∈E
λ,µ∈L

ψij(λ, µ)qi:λqj:µ

s.t. qi:λ ≥ 0 ∀i ∈ V, λ ∈ L∑
λ∈L

qi:λ = 1 ∀i ∈ V.

168

The two constraints can by summarized as qi ∈ 4L, ∀i ∈ V where 4L is the probability169

simplex and L is the number of classes. A natural question is what happens when the domain170

is enlarged. Somewhat surprisingly, the relaxation is tight [11].171

Proposition 2.1. Let E(x∗) and E(q∗) denote the optimal values of (2.6) and (2.7), re-172

spectively. Then,173

E(x∗) = E(q∗).174

In the supplementary material, we show that for any real q, one can obtain a binary x such175

that E(x) ≤ E(q). In particular, it will be true for x∗ and q∗, which implies E(x∗) = E(q∗).176

Note that the proof is constructive.177

3. MAP Inference via Gradient Descent Minimization. To solve the program stated178

in (2.7) we propose an optimization scheme based on projected gradient descent, see Algo-179

rithm 3.1. It was designed with an extra condition in mind, that all operations should be180

differentiable to enable back propagation during training.181

This manuscript is for review purposes only.



6 M. LARSSON, A. ARNAB, S. ZHENG, P. TORR AND F. KAHL

Algorithm 3.1 Algorithm 1. Projected gradient descent algorithm.

Initialize q0

for t from 0 to T − 1 do
Compute the gradient ∇qE(qt).
Take a step in the negative direction, q̃t+1 = qt − γ ∇qE.
Project q̃t+1

i:λ to the probability simplex 4L. qt+1 = Proj4L(q̃).
end for
return qT−1

3.1. Gradient Computations. The gradient ∇qE of the objective function E(q) in (2.7)182

has the following elements183

(3.1)
∂E

∂qi:λ
= ψi(λ) +

∑
j:(i,j)∈E
µ∈L

ψij(λ, µ)qj:µ.184

The contribution from the spatial kernel in ψij , cf. (2.4), can be written as185

(3.2) vspatiali:λ =
∑

j:(i,j)∈E
µ∈L

kspatialλ,µ (pi − pj)qj:µ.186

Since the value of the kernel vspatiali:λ only depends on the relative position of pixels i and j,187

the contribution for all pixels and classes can be calculated by passing qj:µ through a standard188

convolution layer consisting of L× L filters of size (2s+ 1)× (2s+ 1) where L is the number189

of labels and s the number of neighbours each pixel interacts with in each dimension.190

The contribution from the bilateral term is191

(3.3) vbilaterali:λ =
∑

j:(i,j)∈E
µ∈L

kbilateralλ,µ (fi − fj)qj:µ.192

For this computation we utilize the method presented by Jampani et al. [29] which is based on193

the permutohedral lattice introduced by Adams et al. [1]. Efficient computations are obtained194

by using the fact that the feature space is generally sparsely populated. Similar to the spatial195

filter we get L × L filters, each having size of (s + 1)d+1 − sd+1 where s is the number of196

neighbours each pixel interacts with in each dimension in the sparse feature space.197

For the filter bank version the contribution of the pairwise term can be calculated as198

(3.4) vbanki:λ =

F∑
f=1

gf (pi, I)
∑

j:(i,j)∈E
µ∈L

kspatialxi,xj ,f
(pi − pj)qj:µ,199

which, similar to the other spatial kernel can be efficiently calculated using a standard con-200

volution layer. The number of filters needed is L× FL.201
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3.2. Update Step and Projection to Feasible Set. Given the energy gradient and a202

previous estimate of the solution we want to improve our solution by taking a step which203

decreases the energy while still keeping the solution feasible. A straightforward approach of204

doing this would be to start by taking a step in the negative direction of the gradient according205

to206

(3.5) q̃t+1 = qt − γ ∇qE,207

where γ is the the step size. After taking the step the values are projected onto the simplex208

4L satisfying
∑

λ∈L qi:λ = 1 and 0 ≤ qi:λ ≤ 1 by following the method by Chen et al. [19].209

This method is used by by Larsson et al. in [35]. A drawback with this approach is that, if210

q̃t+1 is outside of the simplex, backpropagation through the projection method will give zero211

gradients.212

An alternative method is to use the entropic descent algorithm proposed by Beck et al.213

[5]. In this method, the distance measure for the projection is the Kullback-Leibler divergence214

in contrast to the Euclidean distance. Beck et al. showed that the update step can be written215

on the following closed form216

(3.6) qk+1
ij =

qkij exp (−tk∇qkE)∑
qkij exp (−tk∇qkE)

, tk =

√
2 lnn

Lf

1√
k

217

where n is the number of dimensions (the number of classes in our case), k is the iteration218

number and Lf is a tunable parameter. Note that this projection is done individually for each219

pixel i.220

3.3. Comparison to Mean-Field. In recent years, a popular choice for CRF inference is221

to apply the mean-field algorithm. One reason is that the kernel evaluations can be computed222

with fast bilateral filtering [34]. As we have seen in this section, it can be accomplished with223

our framework as well, with formulas that are less involved. The main difference is that our224

framework directly optimizes the Gibbs energy which corresponds to MAP while mean-field225

optimizes KL-divergence which does not.226

4. Integration in a Deep Neural Network. In this section we will describe how the steps227

of Algorithm 3.1 can be formulated as layers in a neural network. For this, we need to be able228

to calculate error derivatives with respect to the input given error derivatives with respect to229

the output. In addition we need to be able to calculate the error derivatives with respect to the230

network parameters, i.e. the filter weights for the pairwise kernels as well as the unary weight.231

This will enable us to unroll the entire gradient descent process as a Recurrent Neural Network232

(RNN) making it possible to train both the parameters of the CRF as well as the parameters233

of the CNN that gives the unary potentials as well as g, the filter weighting function. A234

schematic of the data flow for one step is shown in Fig. 1. In the supplementary material, all235

derivative formulas are written out in detail.236

4.1. Initialization. The variables q0 are set as the output of the CNN, which has been237

pretrained to estimate the probability of each pixel containing each class and has a softmax238

layers as the last layer to ensure that the variables lies within zero and one.239
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Unary

Bilateral

Spatial

+ ED

Combined

Unary

Pairwise

+ ED

Filterbank

Figure 1. The data flow of one iteration of the projected gradient descent algorithm. Each rectangle or circle
represent an operation that can be performed within a deep learning framework, the ED component performs
an entropic descent update step according to equation (3.6). Left: Combined version of CRF, Right: Filterbank
version of CRF.

4.2. Gradient Computations. We have previously explained the gradient computations240

in Section 3 for the forward pass. To describe the calculation of the error derivatives we first241

notice that the gradient is calculated by summing the unary term and the pairwise term. We242

can hence treat these separately and combine them using an element-wise summing operation.243

Unary Term. The unary term in (2.3) is an elementwise operation with the CNN output as244

input and the unary weight wu as parameter. The operation is obviously differentiable with245

respect to both the layer input as well as its parameter. Note that for wu we get a summation246

over all class and pixel indexes for the error derivatives while for the input the error derivatives247

are calculated elementwise.248

Pairwise Term - Combined version. The spatial pairwise term of the gradient can be cal-249

culated efficiently using standard 2D convolution. In addition to giving us an efficient way250

of performing the forward pass we can also utilize the 2D convolution layer to perform the251

backward pass, calculating the error derivatives with respect to the input and parameters.252

Similar to the spatial term, the bilateral term is also calculated utilizing a bilateral filtering253

technique. Jampani et al. [29] also presented a way to calculate the error derivatives with254

respect to the parameters for an arbitrary shaped bilateral filter.255

Pairwise Term - Filterbank version. For the Filterbank version we also use standard 2D256

convolution operations to calculate the pairwise part of the gradient. This makes the process257

of propagating the error derivatives similar as for the spatial term of the Combined version.258

Interpreting the calculations as two separate steps, one convolution with L × FL filters and259

one weighted summation over the feature weights, the error derivative can be calculated with260

standard network layers. Note that the error derivatives with respect to the feature weights261

gf are also calculated and propagated further back through the pairwise CNN.262

4.3. Entropic Descent Update. The entropic descent step is done individually for each263

pixel. Since we have the update step on closed form we can easily implement it as a layer in264

a deep learning framework. Regarding the error derivative we are required to calculate both265

the error derivatives with respect to the values of the previous iteration, qt and with respect266

to gradient, ∇qtE. The error derivatives with respect to the values of the previous iteration267
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CRF 
update 

stepCNN
Unary

G

Combined

CRF 
update 

stepCNN
Unary

G

Filterbank

Figure 2. The data flow of the deep structure model. Each rectangle or circle represent an operation that
can be performed within a deep learning framework. Note that the CNN outputs both class probabilities z and
filterbank features g for the filterbank version.

are given according to268

(4.1)
∂L

∂qkij
=
qk+1
ij

qkij

(
∂L

∂qk+1
ij

−
n∑
l=1

∂L

∂qk+1
il

qk+1
il

)
,269

where the index i is over all pixels and j is over all the n number of classes. Note that the270

error derivatives with respect to qk+1
ij are given by the previous iteration. The error derivatives271

with respect to the gradient are given according to272

(4.2)
∂L

∂yij
= −tkqk+1

ij

(
∂L

∂qk+1
ij

−
n∑
l=1

∂L

∂qk+1
il

qk+1
il

)
.273

Note that, for ease of notation, we have used yij as the energy derivative of pixel i and class j.274

5. Recurrent Formulation of Deep Structured Model. Our iterative solution to the275

CRF energy minimisation problem by projected gradient descent, as described in the previous276

sections, is formulated as a Recurrent Neural Network (RNN). The input to the RNN is the277

image, and the outputs of the CNN, as shown in Fig. 2. The Unary CNN’s output, z, are278

the unary potentials and obtained after the final softmax layer (since the CNN is initially279

trained for classification). For the filterbank version the CNN also outputs image-dependent280

features, g, which are ”selecting” which filters to use to compose the pairwise term at each281

pixel location.282

Each iteration of the RNN performs one projected gradient descent step to approximately283

solve (2.7). Thus, one update step can be represented by:284

(5.1) qt+1 = f(qt, z, I,w).285

As illustrated in Fig. 2, the gating function G sets qt to z at the first time step, and to qt−1286

at all other time steps. In our iterative energy minimisation, the output of one step is the287

input to the next step. We initialise at t = 0 with the output of the unary CNN.288

The output of the RNN can be read off qT where T is the total number of steps taken.289

In practice, we perform a set number of T steps where T is a hyperparameter. It is possible290

to run the RNN until convergence for each image (thus a variable number of iterations per291

image), but we observed minimal benefit in the final Intersection over Union (IoU) from doing292

so, as opposed to fixing the number of iterations to T = 5.293

The parameters of the RNN are the filter weights for the pairwise kernels, and also the294

weight for the unary terms. Since we are able to compute error derivatives with respect to295
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the parameters, and input of the RNN, we can backpropagate error derivates through our296

RNN to the preceding CNN and train our entire network end-to-end. Furthermore, since the297

operations of the RNN are formulated as filtering, training and inference can be performed in298

a fully-convolutional manner.299

The CNN part of our network allows us to leverage the ability of CNNs to learn rich300

feature represenations from data, whilst the RNN part of the network utilises the CRF’s301

ability to model output structure. As we learn the parameters of our pairwise terms, we are302

not restricted to Gaussian potentials as in [33, 48], and we show the benefits of this in our303

experiments (Section 7).304

6. Implementation Details. Our proposed CRF model has been implemented in the305

Caffe [30] library. The Unary CNN part of our model is initialized form a pre-trained306

segmentation network. For all experiments we use the Deeplab-LargeFOV proposed by Chen307

et al. [18]. For the combined version of our model the unary CNN is pre-trained for pixel-wise308

classification.309

For the filterbank version we use a modified version of the Deeplab-LargeFOV where a310

second head is added to the the network as in [17]. This head is formed by upsampling311

and concatenating several intermediate layers of the original network, a final convolution are312

applied to the concatenated features and lastly a softmax layer is added. The second head313

outputs the filter choosing features gf and is pre-trained to classify each pixel as horizontal314

semantic edge, vertical semantic edge or no edge. This part of the base network can also be315

trained during the final end-to-end training.316

Both the combined and the filterbank models can be trained from scratch, however the317

training converges faster and more reliably when the unary part is pretrained.318

The CRF model has several tunable hyperparameters. The parameter Lf and the number319

of iterations T specify the properties of the gradient decent algorithm. Lf influences the step320

size (larger Lf gives a smaller step size), too high a step size might make the algorithm not321

end up in a minimum while setting a low step size and a low number of iterations might not322

give the algorithm a chance to converge. The kernel sizes for the pairwise kernels also need323

to be set. Choosing the value of these parameters gives a trade-off between model expression324

ability and number of parameters, which may cause (or hinder) over-fitting.325

The spatial weights of the CRF model are all initialized as zero with the motivation that326

we did not want to impose a shape for these filters, but instead see what was learned during327

training. The bilateral filters were initialized as Gaussians with the common Potts class328

interaction (the filters corresponding to interactions between the same class were set to zero)329

[34, 14, 48].330

7. Experiments. We evaluate the proposed approach on three datasets: Weizmann331

Horse dataset [10], NYU V2 geometric dataset [46] and Pascal VOC 2012 [23]. In these332

experiments, we show that the proposed approach, has advantages over similar approaches333

such as CRF-RNN [48]. In addition we show that adding a CRF-model as proposed in this334

paper improves the results on strong unary CNN networks, even for cases where the CNN has335

been trained on large amounts of extra data.336
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CRF

CNN

upsample
and concat

kernel selection

unary terms

Figure 3. Schematic of the filterbank version of our model. The CNN part outputs initial class probability
maps as well as filter selection maps. The structure used for the CNN is a modified version of the Deeplab-
LargeFOV [18] with an extra added head.

Method mIoU (%)

Unary CNN - Deeplab [14] 90.89

CRF-RNN [48] 91.47
Gaussian-ED 92.64

Combined-ED 92.99
Combined-MF 92.73
Combined-PGD 92.79

Filterbank-ED 93.22

Table 1
Quantitative results on the Weizmann Horse dataset comparing our method to baselines as well as com-

parison of different inference methods. Mean intersection over union for the test set is shown.

7.1. Weizmann Horse. The Weizmann Horse dataset is widely used for benchmarking337

object segmentation algorithms. It contains 328 images of horses in different environments.338

We divide these images into a training set of 150 images, a validation set of 50 images and339

a test set of 128 images. Our purpose is to verify our ability to learn reasonable kernels and340

study the effects of different settings on a relatively small dataset. In addition we use this341

dataset to evaluate our proposed inference method as well as the different types of CRF-342

models. To compare the different types of inference methods train our combined model with343

three types of inference methods: Entropic Descent (ED), Projected Gradient Descent (PGD)344

and Mean Field (MF). We also train a version with only Gaussian potentials (using the same345

potentials as for CRF-RNN [48]). We also trained and evaluated the filter-bank version. The346

results are summarized in Table 1 and some example segmentations are shown in Fig. 4. As347

can be seen from the results, our proposed inference method using entropic descent achieves348

slightly better results on the test set for the combined CRF model. However, the increase349
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Input Unary CRF-RNN Combined Filterbank Ground truth

Figure 4. Qualitative results on the Weizmann Horse dataset. Note that the proposed methods capture
the shape of the horses better than the baselines, especially compared to the unary netwok.

0 1 2 3 4 5 6 7

iteration

0.925

0.927

0.929

0.931

0.933

m
Io

U

combined

filterbank

Figure 5. Weizmann Horse test set results in terms of mean Intersection over Union plotted as a function
of the number of iterations for the CRF inference method. During training the number of iterations were set
to five.

over mean field and projected gradient descent inference is minor. For the case where we350

used Gaussian CRF potentials we get better results with entropic descent inference compared351

to mean field. Comparing entropic descent inference and projected gradient descent the two352

methods achieve similar results. Training a model with projected gradient descent is however353

problematic due to the zeroing of gradients, to solve this we train with a ”leaky” version of354

projected gradient descent. This means that the intermediate states and final results might355

not lie on the probability simplex, something that is guaranteed for entropic descent inference.356

In Fig. 5 the mean intersection over union on the test set is plotted as a function of the357

number of CRF inference iterations. During training the number of iterations were set to five.358

As can be seen in the figure, increasing the number of inference step will only slightly increase359
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k1 k2 k3

g1 g2 g3

Figure 6. Visualization of the pairwise kernel weights for the filterbank version trained on the Weizmann
Horse data set. These weights are for the classes ”background” and ”horse”, the plots can be understood as the
energy added when assigning the pixels with the relative positions (x,y) and (x+x-shift,y+y-shift) as background
and horse. This energy is then multiplied by the ”filter selection”-map g for each pixel and then summed. The
first map of g has high values at edges in the horizontal direction, looking at k1 we see that changing classes in
this direction does not add as much energy as changing classes in the vertical direction. Similar behaviour can
be seen for the second map. Note that the middle position has been removed from the kernel plots since it does
not provide the same structural information as the other weights and can hence not be interpreted in the same
way.

the segmentation result. In Fig. 6 the pairwise weights of the filterbank version is visualized.360

7.2. NYU V2. The NYU V2 dataset contains images taken by Microsoft Kinect V-1361

camera in 464 indoor scenes. We use the official training and validation splits consisting of362

795 and 654 images, respectively. Following the setting described in Wang et al. [46], we also363

include additional images for training. These are the images from the NYU V1 dataset that364

do not overlap with the images in the official validation set. This gives a total of 894 images365

with semantic label annotations for training. As in [46] we consider 5 classes conveying strong366

geometric properties: ground, vertical, ceiling, furniture and objects.367

As shown in Table 2, we achieved superior results for semantic image segmentation on the368

NYU V2 dataset. Some example segmentations are shown in Fig. 8.369

7.3. PASCAL VOC. The PASCAL VOC 2012 segmentation benchmark [22] consists of 20370

foreground and one background class. The unary network used for these experiments is again371

This manuscript is for review purposes only.



14 M. LARSSON, A. ARNAB, S. ZHENG, P. TORR AND F. KAHL

Method mIoU (%)

R-CNN [25] 40.3
Semantic HCRF [46] 42.7
Joint HCRF [46] 44.2
Modular CNN [28] 54.3

Unary CNN - Deeplab [14] 62.8
CRF-RNN [48] 64.4

Combined 65.4
Filterbank 65.4

Table 2
Quantitative results comparing our method to baselines as well as state-of-the-art methods. Mean intersec-

tion over union for the validation set is shown for the NYU V2 dataset. The CRF-RNN baseline was initialized
with the same unary network as the proposed models.

furniture-ceiling object-ground

Figure 7. Visualization of the pairwise kernel weights for the filterbank version trained on the NYU V2
data set. These weights are for the classes shown above the plots and for the third filter selection map which
usually has a high value for pixels with no semantic edge. The furniture-ceiling kernel favors putting furniture
labels below ceiling labels while the obejct-ground kernel has a more Gaussian-like shape.

the Deeplab-LargeFOV network [18], this network has been pretrained on the MS-COCO 2014372

dataset [38] and then trained on the PASCAL VOC training data as well as a training set373

created from annotations of the semantic boundaries dataset [26]. We add our CRF-models to374

this baseline network and train only on the PASCAL VOC training data. This to show that375

we can improve upon really strong baselines, even though we finetune the complete models376

on only a fraction of the training data used for the baseline. The results for the PASCAL377

VOC 2012 validation set is shown in Table 3. In addition we evaluate our model on the test378

set, for this the results are shown in Table 4. As can be seen, our models perform similar379

to models trained with the same base network. Note that our models are only trained on380

the training data during end-to-end training. Recently there have been several CNNs with381

different base architectures presented that perform well, even without a CRF. The top entry382

at the moment is PSPNet [36] with a mIoU of 85.4, we leave it to future work to explore383
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Input Unary CRF-RNN Combined Filterbank Ground truth

Figure 8. Qualitative results on the NYU V2 dataset. Note that the proposed methods captures the shape of
the object instances better than the baselines. This effect is perhaps most pronounced for the paintings hanging
on the walls. The pixels colored off-white are ”ignore”-pixels, these are not counted in the evaluation. The
training images have similar ”ignore”-pixels.

Method mIoU (%)

Unary CNN - Deeplab [14] 68.5
CRF-RNN [48] 71.7

Combined 72.0
Filterbank 70.1

Table 3
Quantitative results on the PASCAL VOC 2012 validation set. The CRF-RNN baseline was initialized

with the same unary network as the proposed models. The unary model was pretrained on the MS-COCO 2014
dataset [38].

whether these architectures can be improved using our proposed methodology.384

7.4. Execution time. We also investigated the difference in running time between the385

two proposed models. This was done on a computer with a Nvidia Titan X GPU with Pascal386

architecture and an Intel i7-5930K processor. The implementation used for the bilateral387

filtering used was the one from Jampani et al. [29] where most of the computations are done388

on the GPU. The initialization of the permutohedral lattice is however done on the CPU.389

The runtimes were tested by performing the forward step for a randomized RGB image of390

size 640 × 640 with 21 classes. The numbers presented are the average of 100 runs. For391

the combined model the forward runtime was 12 seconds while for the filterbank it was 0.37392
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Input Unary CRF-RNN Combined Filterbank Ground truth

Figure 9. Qualitative results on the PASCAL VOC dataset. [22]. The pixels colored off-white are ”ignore”-
pixels, these are not counted in the evaluation. The training images have similar ”ignore”-pixels.

Method mIoU (%)

Unary CNN - Deeplab [14] 68.9
DT-EdgeNet [17] 71.7
CRF-RNN [48] 72.2

Combined 72.5
Filterbank 69.5

Table 4
Quantitative results on the PASCAL VOC 2012 test set. The three top entries use the same base network

as our models. The unary model was pretrained on the MS-COCO 2014 dataset [38], but note that our models
were not trained using MS-COCO.

second.393

8. Conclusion. In this paper we have presented a gradient descent based method for infer-394

ence in Conditional Random Fields. This method allows for backpropagation of error deriva-395

tive hence enabling end-to-end training with an Convolutional Neural Network of choice. We396

show that this inference method has beneficial properties and performs better on some tasks397

compared to other methods such as mean field. In addition, we present two types of Condi-398

tional Random Field models tailored for semantic segmentation. The combined model that399

uses spatial pairwise terms as well as image-dependent bilateral pairwise terms. This model400

performs well but is somewhat computational expensive due to the high dimensionality of the401

bilateral filtering. We also present the filterbank model which is also image dependent but402
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only requires 2D convolutions during inference. The image dependence of the model comes403

from an output map of the base CNN that acts as a ”filter choosing” map. This enables the404

model to, for example, use one filter representing pairwise interaction between pixel labels at405

semantic edges and another filter far away from semantic edges. This model gives a speedup406

by a factor of 32 compared to the combined model without loosing performance in terms407

of segmentation quality. For the smaller dataset it achieves similar segmentation quality as408

the combined model. Since the filterbank version of the model learns how the pairwise term409

should depend on the image it is in this aspect more expressive than the combined version.410

The pairwise terms of the combined model is however, due to its dependence on the color411

gradient, hand-crafted to preserve and refine edges. This is beneficial for the PASCAL VOC412

dataset where the unary network generally capture the context well but outputs ”blobby”413

segmentations. For all the models presented the pairwise kernels can have arbitrary shape,414

instead of commonly used Gaussian kernels. This enables the models to learn more compli-415

cated pairwise label interactions.416
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