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Abstract. Are we using the right potential functions in the Conditional Random
Field models that are popular in the Vision community? Semantic segmentation
and other pixel-level labelling tasks have made significant progress recently due
to the deep learning paradigm. However, most state-of-the-art structured predic-
tion methods also include a random field model with a hand-crafted Gaussian
potential to model spatial priors, label consistencies and feature-based image con-
ditioning.
In this paper, we challenge this view by developing a new inference and learn-
ing framework which can learn pairwise CRF potentials restricted only by their
dependence on the image pixel values and the size of the support. Both standard
spatial and high-dimensional bilateral kernels are considered. Our framework is
based on the observation that CRF inference can be achieved via projected gra-
dient descent and consequently, can easily be integrated in deep neural networks
to allow for end-to-end training. It is empirically demonstrated that such learned
potentials can improve segmentation accuracy and that certain label class inter-
actions are indeed better modelled by a non-Gaussian potential. In addition, we
compare our inference method to the commonly used mean-field algorithm. Our
framework is evaluated on several public benchmarks for semantic segmentation
with improved performance compared to previous state-of-the-art CNN+CRF
models.

Keywords: Conditional Random Fields, Segmentation, Convolutional Neural
Networks

1 Introduction

Markov Random Fields (MRFs), Conditional Random Fields (CRFs) and more gener-
ally, probabilistic graphical models are a ubiquitous tool used in a variety of domains
spanning Computer Vision, Computer Graphics and Image Processing [23, 4]. In this
paper, we focus on the application of CRFs for Computer Vision problems involving
per-pixel labelling such as image segmentation. There are many successful approaches
in this line of research, such as the interactive segmentation of [31] using graph cuts
and the semantic segmentation works of [25, 35] where the parallel mean-field infer-
ence algorithm was applied for fast inference. Recently, Convolutional Neural Networks
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Fig. 1. Learned spatially invariant CRF filters for CITYSCAPES. These filters model contextual
relationships between classes and their values can be understood as the energy added when setting
one pixel to the first class (e.g., vegetation) and the other pixel with relative position (x-shift,y-
shift) to the second class (e.g., traffic sign). Note how the terrain-traffic light filter favours vertical
edges. In addition, the model can learn filters of different shapes which is shown by the road-
sidewalk filter.

(CNNs) have dominated the field in a variety of recognition tasks [18, 33, 30]. However,
we observe that leading segmentation approaches still include CRFs, either as a post-
processing step [10, 16, 9, 11], or as part of the deep neural network itself [38, 26, 2, 27,
22].

We leverage on the idea of embedding inference of graphical models into a neural
network. An early example of this idea was presented in [7] where the authors back
propagated through the Viterbi algorithm when designing a document recognition sys-
tem. Similar to [38, 2, 3, 37], we use a recurrent neural network to unroll the iterative
inference steps of a CRF. This was first used in [38] and [32] to imitate mean-field in-
ference and to train a fully convolutional network [28, 10] along with a CRF end-to-end
via back propagation. In contrast to mean-field, we do not optimize the KL-divergence.
Instead, we use a gradient descent approach for the inference that directly minimises the
Gibbs energy of the random field and hence avoids the approximations of mean-field.
A similar framework was recently suggested in [3] for multi-label classification prob-
lems in machine learning with impressive results. However, [3] uses a Structured SVM
approach for training whereas we do back propagation through the actual steps of the
gradient descent method. Moreover, [15] have recently shown that one can obtain lower
energies compared to mean-field inference using gradient descent based optimization
schemes. Still, we lack formal algorithmic guarantees of the solution quality compared
to, e.g., graph cuts [8].

In many works, the pairwise potentials consist of parametrized Gaussians [24, 38,
2] and it is only the parameters of this Gaussian which are learned. Our framework can
learn arbitrary pairwise potentials which need not be Gaussian, cf. Fig. 1. An early work
which learned potentials of a linear chain CRF for sequence modelling is [29]. In [12],
a general framework for learning arbitrary potentials in deep structured models was
proposed based on approximate Maximum Likelihood learning. One of the advantages
with that framework is that data likelihood is maximized in the learning process. How-
ever, this involves approximating the partition function which is otherwise intractable.
This hinders the handling of large structured output spaces like in our case. The exper-
iments of [12] and [3] are limited to multi-label classification where there is no spatial
relationship between different labels as in pixel-labelling tasks. Morever, [22] have also
observed that the memory requirements of the method of [12] renders it infeasible for
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the large datasets common in Computer Vision. Another approach to learning arbitrary
pairwise potentials was presented in [22] which uses Gibbs sampling. Again they strug-
gle with the difficulty of computing the partition function. In the end, only experiments
on synthetic data restricted to learned 2D potentials are presented.

The authors of [26] and [9] also learn arbitrary pairwise potentials to model con-
textual relations between parts of the image. However, their approaches still perform
post-processing with a CRF model with parametric Gaussian potentials. In [20], a pair-
wise potential is learned based on sparse bilateral filtering. Applying such a filter can
be regarded as one iteration of mean field CRF inference. Contrasting [20], we not
only learn sparse high-dimensional bilateral filters, but also learn arbitrary spatial fil-
ters. Such spatial 2D potentials are computationally much more efficient and easier to
analyze and interpret compared to their high-dimensional counterparts.

In summary, our contributions are as follows.

– Our main contribution is a new framework for non-parametric CRF inference and
learning which is integrated with standard CNNs. During inference, we directly
minimize the CRF energy using gradient descent and during training, we back prop-
agate through the gradient descent steps for end-to-end learning.

– We analyze the learned filter kernels empirically and demonstrate that in many
cases it is advantageous with non-Gaussian potentials.

– We experimentally compare our approach to several leading methodologies, e.g.,
[38, 16, 28] and improve on state of the art on two public benchmarks: NYU V2 [36]
and CITYSCAPES [14].

Our framework has been implemented in both CAFFE [21] and MATCONVNET [34],
and all source code will be made publicly available to facilitate further research.

2 CRF Formulation

Consider a Conditional Random Field overN discrete random variablesX = {X1, ..., XN}
conditioned on an observation I and let G = {V, E} be an undirected graph whose ver-
tices are the random variables {X1, ..., XN}. Each random variable corresponds to a
pixel in the image and takes values from a predefined set ofL labelsL = { 0, ..., L−1 }.
The pair (X , I) is modelled as a CRF characterized by the Gibbs distribution

P (X = x|I) = 1

Z(I)
exp(−E(x|I)), (1)

where E(x|I) denotes the Gibbs energy function with respect to the labeling x ∈ LN
and Z(I) is the partition function. To simplify notation the conditioning on I will from
now on be dropped. The MAP inference problem for the CRF model is equivalent to
the problem of minimizing the energy E(x). In this paper, we only consider energies
containing unary and pairwise terms. The energy function can hence be written as

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xi, xj) (2)

where ψi : L → R and ψij : L × L → R are the unary and pairwise potentials,
respectively.
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2.1 Potentials

The unary potential ψi(xi) specifies the energy cost of assigning label xi to pixel i.
In this work we obtain our unary potentials from a CNN. Roughly speaking, the CNN
outputs a probability estimate of each pixel containing each class. Denoting the output
of the CNN for pixel i and class xi as zi:xi , the unary potential is

ψi(xi) = −wu log(zi:xi + ε) (3)

where wu is a parameter controlling the impact of the unary potentials, and ε is intro-
duced to avoid numerical problems.

The pairwise potential ψij(xi, xj) specifies the energy cost of assigning label xi
to pixel i while pixel j is assigned label xj . Introducing pairwise terms in our model
enables us to take dependencies between output data into account. We consider the
following set of pairwise potentials

ψij(xi, xj) = kspatialxi,xj (pi − pj) + kbilateralxi,xj (fi − fj) (4)

Here kspatialxi,xj denotes a spatial kernel with compact support. Its value depends on the
relative position coordinates pi − pj between pixels i and j. We do not restrict these
spatial terms to any specific shape, cf. Fig. 1. However, we restrict the support of the
potential meaning that if pixels i and j are far apart, then the value of kspatialxi,xj (pi−pj)
will be zero. CRFs with Gaussian potentials do not in theory have compact support,
and therefore, they are often referred to as dense. However, in practice, the exponential
function in the kernel drops off quickly and effectively. The interactions between pixels
far apart are negligible and are commonly truncated to 0 after two standard deviations.

The term kbilateralxi,xj is a bilateral kernel which depends on the feature vectors fi and
fj for pixels i and j, respectively. Following several previous works [24, 38, 11], we let
the vector depend on pixel coordinates pi and RGB values associated to the pixel, hence
fi is a 5-dimensional vector. Note that for both the spatial and the bilateral kernels, there
is one kernel for each label-to-label (xi and xj) interaction to enable the model to learn
differently shaped kernels for each of these interactions.

2.2 Multi-label Graph Expansion and Relaxation

To facilitate a continuous relaxation of the energy minimisation problem we start off by
expanding our original graph in the following manner. Each vertex in the original graph
G will now be represented by L vertices Xi:λ, λ ∈ L. In this way, an assignment of
labels in L to each variable Xi is equivalent to an assignment of boolean labels 0 or 1
to each node Xi:λ, whereby an assignment of label 1 to Xi:λ means that in the multi-
label assignment, Xi receives label λ. As a next step, we relax the integer program by
allowing real values on the unit interval [0, 1] instead of booleans only. We denote the
relaxed variables qi:λ ∈ [0, 1]. We can now write our problem as a quadratic program

min
∑

i∈V,λ∈L

ψi(λ)qi:λ +
∑

(i,j)∈E
λ,µ∈L

ψij(λ, µ)qi:λqj:µ

s.t. qi:λ ≥ 0 ∀i ∈ V, λ ∈ L∑
λ∈L

qi:λ = 1 ∀i ∈ V.

(5)
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Note that the added constraints ensure that our solution lies on the probability sim-
plex. A natural question is what happens when the domain is enlarged, allowing real
values instead of booleans. Somewhat surprisingly, the relaxation is tight [6].

Proposition 1 Let E(x∗) and E(q∗) denote the optimal values of (5), where x∗ is
restricted to boolean values. Then,

E(x∗) = E(q∗).

In the supplementary material, we show that for any real q, one can obtain a binary
x such that E(x) ≤ E(q). In particular, it will be true for x∗ and q∗, which implies
E(x∗) = E(q∗). Note that the proof is constructive.

In summary, it has been shown that to minimize the energy function E(x) over
x ∈ LN , one may work in the continuous domain, minimize over q, and then replace
any solution q by a discrete solution x which has lower or equal energy. It will only be
possible to find a local solution q, but still the discrete solution x will be no worse than
q.

3 Minimization with Gradient Descent

To solve the program stated in (5) we propose an optimization scheme based on pro-
jected gradient descent, see Algorithm 1. It was designed with an extra condition in
mind, that all operations should be differentiable to enable back propagation during
training.

Initialize q0

for t from 0 to T − 1 do
Compute the gradient∇qE(qt).
Take a step in the negative direction, q̃t+1 = qt − γ ∇qE.
Project q̃t+1

i:λ to the simplex4L satisfying
∑
λ∈L q̃i:λ = 1 and 0 ≤ q̃i:λ ≤ 1,

qt+1 = Proj4L(q̃).
end
Output: qT−1

Algorithm 1: Algorithm 1. Projected gradient descent algorithm.

The gradient∇qE of the objective function E(q) in (5) has the following elements

∂E

∂qi:λ
= ψi(λ) +

∑
j:(i,j)∈E
µ∈L

ψij(λ, µ)qj:µ. (6)

The contribution from the spatial kernel in ψij , cf. (4), can be written as

vspatiali:λ =
∑

j:(i,j)∈E
µ∈L

kspatialλ,µ (pi − pj)qj:µ. (7)
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Since the value of the kernel vspatiali:λ only depends on the relative position of pixels i and
j, the contribution for all pixels and classes can be calculated by passing qj:µ through a
standard convolution layer consisting of L×L filters of size (2s+1)× (2s+1) where
L is the number of labels and s the number of neighbours each pixel interacts with in
each dimension.

The contribution from the bilateral term is

vbilaterali:λ =
∑

j:(i,j)∈E
µ∈L

kbilateralλ,µ (fi − fj)qj:µ. (8)

For this computation we utilize the method presented by Jampani et al. [20] which is
based on the permutohedral lattice introduced by Adams et al. [1]. Efficient computa-
tions are obtained by using the fact that the feature space is generally sparsely popu-
lated. Similar to the spatial filter we get L×L filters, each having size of (s+1)d+1 −
sd+1 where s is the number of neighbours each pixel interacts with in each dimension
in the sparse feature space.

Next, we simply take a step in the negative direction of the gradient according to

q̃t+1 = qt − γ ∇qE, (9)

where γ is the the step size.
Finally, we want to project our values onto the simplex4L satisfying

∑
λ∈L qi:λ =

1 and 0 ≤ qi:λ ≤ 1. This is done following the method by Chen et al. [13] that effi-
ciently calculates the euclidean projection on the probability simplex 4L, for details
see the supplementary materials. Note that this projection is done individually for each
pixel i.

Comparison to Mean-Field. In recent years, a popular choice for CRF inference is to
apply the mean-field algorithm. One reason is that the kernel evaluations can be com-
puted with fast bilateral filtering [25]. As we have seen in this section, it can be accom-
plished with our framework as well. The main difference is that our framework directly
optimizes the Gibbs energy which corresponds to the MAP solution while mean-field
optimizes KL-divergence which does not.

4 Integration in a Deep Learning Framework

In this section we will describe how the gradient descent steps of Algorithm 1 can be
formulated as layers in a neural network. We need to be able to calculate error deriva-
tives with respect to the input given error derivatives with respect to the output. In
addition we need to be able to calculate the error derivatives with respect to the net-
work parameters. This will enable us to unroll the entire gradient descent process as a
Recurrent Neural Network (RNN). A schematic of the data flow for one step is shown
in Fig. 2. In the supplementary material, all derivative formulae are given.

Initialization. The variables q0 are set as the output of the CNN, which has been pre-
trained to estimate the probability of each pixel containing each class and has a softmax
layers at the end to ensure that the variables lies within zero and one as well as sum to
one for each pixel.
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Fig. 2. The data flow of one iteration of the projected gradient descent algorithm. Each rectangle
or circle represent an operation that can be performed within a deep learning framework.

Gradient Computations. We have previously explained the gradient computations in
Section 3 for the forward pass. To describe the calculation of the error derivatives we
first notice that the gradient is calculated by summing three terms, the unary, spatial and
bilateral pairwise terms. We can hence treat these three terms separately and combine
them using element-wise summing.

The unary term in (3) is an element-wise operation with the CNN output as input and
the unary weightwu as parameter. The operation is obviously differentiable with respect
to both the layer input as well as its parameter. Note that for wu we get a summation
over all class and pixel indexes for the error derivatives while for the input the error
derivatives are calculated element-wise. The spatial pairwise term of the gradient can be
calculated efficiently using standard 2D convolution. In addition to giving us an efficient
way of performing the forward pass we can also utilize the 2D convolution layer to
perform the backward pass, calculating the error derivatives with respect to the input
and parameters. Similar to the spatial term, the bilateral term is also calculated utilizing
a bilateral filtering technique. Jampani et al. [20] also presented a way to calculate the
error derivatives with respect to the parameters for an arbitrary shaped bilateral filter.

Gradient Step. Taking a step in the negative direction of the gradient is easily incorpo-
rated in a deep learning framework by using an element-wise summing layer. The layer
takes the variables qt as the first input and the gradient (scaled by −γ) as the second
input.

Simplex Projection As a final step, the variables from the gradient step q̃t are pro-
jected onto the simplex 4L. In reality we use a leaky version of the last step of the
projection algorithm to avoid error derivatives becoming zero during back propagation.
Since the projection is done individually for each pixel it can be described as a function
f(q̃) : RL → RL of which we can calculate the Jacobian, see supplementary materials.
Knowing the Jacobian, the error derivatives with respect to the input can be computed
during back propagation.
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Fig. 3. The data flow of the deep structured model. Each rectangle or circle represent an operation
that can be performed within a deep learning framework.

5 Recurrent Formulation as a Deep Structured Model

Our iterative solution to the CRF energy minimisation problem by projected gradient
descent, as described in the previous sections, is formulated as a Recurrent Neural Net-
work (RNN). The input to the RNN is the image, and the outputs of a CNN, as shown
in Fig. 3. The CNN’s output, z, are the unary potentials and obtained after the final
softmax layer (since the CNN is initially trained for classification).

Each iteration of the RNN performs one projected gradient descent step to approxi-
mately solve (5). Thus, one update step can be represented by:

qt+1 = f(qt, z, I,w). (10)

As illustrated in Fig. 3, the gating function G1 sets qt to z at the first time step, and to
qt−1 at all other time steps. In our iterative energy minimisation formulated as an RNN,
the output of one step is the input to the next step. We initialise at t = 0 with the output
of the unary CNN.

The output of the RNN can be read off qT where T is the total number of steps
taken. In practice, we perform a set number of T steps where T is a hyperparameter. It
is possible to run the RNN until convergence for each image (thus a variable number
of iterations per image), but we observed minimal benefit in the final Intersection over
Union (IoU) from doing so, as opposed to T = 5 iterations.

The parameters of the RNN are the filter weights for the spatial and bilateral kernels,
and also the weight for the unary terms. Since we are able to compute error derivatives
with respect to the parameters, and input of the RNN, we can back propagate error
derivates through our RNN to the preceding CNN and train our entire network end-to-
end. Furthermore, since the operations of the RNN are formulated as filtering, training
and inference can be performed efficiently in a fully-convolutional manner.

Implementation Details. Our proposed CRF model has been implemented in the CAFFE
[21] library, and also has a Matlab wrapper allowing it to be used in MATCONVNET [34].
The Unary CNN part of our model is initialised from a pre-trained segmentation net-
work. As we show in our experiments, different pre-trained networks for different ap-
plications can be used.

The CRF model has several tunable parameters. The step size γ and the number
of iterations T specify the properties of the gradient decent algorithm. Too high a step
size γ might make the algorithm not end up in a minimum while setting a low step size
and a low number of iterations might not give the algorithm a chance to converge. The
kernel sizes for the spatial and bilateral kernels also need to be set. Choosing the value
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Fig. 4. Visualization of intermediate states of the CRF-Grad layer for the WEIZMANN HORSE

dataset. Note how each step of the gradient descent algorithm refines the segmentation slightly,
removing spurious outlier pixels classified as horse. zhorse is the CNN output.

of these parameters gives a trade-off between model expression ability and number of
parameters, which may cause (or hinder) over-fitting.

The spatial weights of the CRF model are all initialized as zero with the motivation
that we did not want to impose a shape for these filters, but instead see what was learned
during training. The bilateral filters were initialized as Gaussians with the common Potts
class interaction (the filters corresponding to interactions between the same class were
set to zero) as done in [25, 10, 38]. Note that unlike [25, 10] we are not limited to only
Potts class interactions.

6 Experiments

We evaluate the proposed approach on three datasets: WEIZMANN HORSE [5], NYU
V2 [36] and CITYSCAPES [14]. In these experiments, we show that the proposed ap-
proach, denoted CRF-Grad, has advantages over baseline approaches such as CRFas-
RNN [38] and complement other networks such as FCN-8s [28] and LRR [16]. In addi-
tion we compare our inference method to mean-field inference. Hyperparameter values
not specified in this section can be found in the supplementary materials.

6.1 Weizmann Horse

The WEIZMANN HORSE dataset contains 328 images of horses in different environ-
ments. We divide these images into a training set of 150 images, a validation set of 50
images and a test set of 128 images. Our purpose is to verify our ability to learn reason-
able kernels and study the effects of different settings on a relatively small dataset.

The CNN part of our model was initialized as an FCN-8s network [28] pre-trained
without the CRF layer. We then compare several variants of our model. We start off
by training a variant of our CRF model only using the 2D spatial kernel. We compare
these results to using a Gaussian spatial filter, where the parameters for the Gaussian
kernel were evaluated using cross-validation. In addition we train the full model with
both the spatial and bilateral kernels, once keeping the filters fixed as Gaussians and
once allowing arbitrarily shaped filters.
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The mean Intersection over Union (IoU) on the test set, for different configurations
of our model, is shown in Table 1. Our results show that allowing arbitrarily shaped
filters gives better performance than keeping the filters fixed as Gaussian. This is the
case for both the spatial and bilateral kernels. Also, adding bilateral filters improves
the results compared to using spatial filters only. In addition the model trained with our
inference method performs better than the model (with the same unary and pairwise
potentials) trained with mean-field inference.

WEIZMANN HORSE NYU V2 CITYSCAPES

Method IoU (%) Method IoU (%) Method IoU (%)
FCN-8s (only) 80.0 R-CNN [17] 40.3 CRFasRNN* [38] 62.5
FCN-8s + spatial (G) 81.3 Joint HCRF [36] 44.2 Deeplabv2-CRF [11] 70.4
FCN-8s + spatial 82.0 Modular CNN [19] 54.3 Adelaide context [26] 71.6
FCN-8s + full (G) 82.9 CRFasRNN [38] 54.4 LRR-4x [16] 71.8
FCN-8s + full 84.0 CRF-Grad (Ours) 55.0 CRF-Grad (Ours) 71.9
FCN-8s + full (MF) 83.3
*Note that CRFasRNN uses a different CNN model than ours on the CITYSCAPES dataset.

Table 1. Quantitative results comparing our method to baselines as well as state-of-the-art
methods. Mean intersection over union for the test set is shown for WEIZMANN HORSE and
CITYSCAPES, for NYU V2 there is no test set and validation score is presented. In the entry
denoted “full” the complete CRF-Grad layer was used, while in “spatial” no bilateral kernel was
used. A (G) means that the filters were restricted to a Gaussian shape and (MF) means that the
inference method was switched to mean field. For the entries denoted CRF-Grad the full model
was used.

In Fig. 4 the intermediate states of the layer (qt for each gradient descent step) are
shown. Fig. 5 presents a convergence analysis for the full version of our layer as well as
a comparison to mean-field inference. The results show that the CRF energy converges
in only a few iteration steps and that increasing the number of iterations barely affects
performance after T = 6 iterations. It also shows that our inference method achieves
lower Gibbs energy as well as higher IoU results compared to mean-field, even for
models trained with mean-field inference. Looking at using mean field inference for the
model trained with projected gradient descent we see that the energy increases for each
iteration. The reason for this is that the mean-field method doesn’t actually minimize
the energy but the Kullback-Liebler divergence between the Gibbs distribution and the
solution. This is, as shown in the supplementary materials, equivalent to minimizing
the energy minus the entropy. The extra entropy term favors “uncertain” solutions, i.e.
solution with values not close to zero or one, which increases the energy for some
models.

6.2 NYU V2

The NYU V2 dataset contains images taken by Microsoft Kinect V-1 camera in 464
indoor scenes. We use the official training and validation splits consisting of 795 and
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Fig. 5. Left and Middle: CRF energy, as defined in (5), as a function of inference iterations. The
thin blue lines show the different instances, the thicker red line show the mean while the green line
shows the mean when the inference method has been switched. The model has been trained with
the inference method shown in respective title. For these calculations the leak factor was set to
zero, meaning that the solutions satisfy the constraints of (5). Note that, for presentation purposes,
all energies have been normalized to have the same final energy. Right: Mean IoU as a function
of iterations for the two different models and inference methods. The number of iterations were
set to five during training. All results are from the test set of the WEIZMANN HORSE data set.

654 images, respectively. Following the setting described in Wang et al. [36], we also
include additional images for training. These are the images from the NYU V1 dataset
that do not overlap with the images in the official validation set. This gives a total of 894
images with semantic label annotations for training. As in [36] we consider 5 classes
conveying strong geometric properties: ground, vertical, ceiling, furniture and objects.
The CNN part of our model was initialized as the fully convolutional network FCN-
8s [28] pre-trained on the data. Afterwards we added our CRF-Grad layer and trained
the model end-to-end.

As shown in Table 1, we achieved superior results for semantic image segmentation
on the NYU V2 dataset. Some example segmentations are shown in Fig. 6. Additional
examples are included in the supplementary material.

6.3 Cityscapes

The CITYSCAPES dataset [14] consists of a set of images of street scenes collected
from 50 different cities. The images are high resolution (1024 × 2048) and are paired
with pixel-level annotations of 19 classes including road, sidewalk, traffic sign, pole,
building, vegetation and sky. The training, validation and test sets consist of 2975, 500
and 1525 images, respectively. In addition there are 20000 coarsely annotated images
that can be used for training. The CNN part of our model was initialized as an LRR
network [16] pre-trained on both the fine and the coarse annotations. We then added
our CRF-Grad layer and trained the model end-to-end on the finely annotated images
only.

In Table 1 the results of evaluating our model on the test set are compared to current
state of the art. As can be seen, our model is on par although the improvement upon
LRR is minor. An interesting aspect of CITYSCAPES is that it contains classes of thin
and vertical objects, e.g., traffic light and pole. What we noticed is that the spatial filters
for these classes usually get a more oblong shape. This type of pairwise filters does not
add as much energy for switching classes going in the horizontal direction, favoring
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Input FCN-8s CRF-RNN CRF-Grad Ground truth

Fig. 6. Qualitative results on the NYU V2 dataset. Note that the CRF-Grad captures the shape of
the object instances better compared to the baselines. This effect is perhaps most pronounced for
the paintings hanging on the walls.

vertically elongated segmentations. This can be seen in the spatial filter for the class
interaction between “terrain” and “traffic light” in Fig. 1. Some example segmentations
are shown in Fig. 7. Additional examples as well as class-wise results are included in
the supplementary material. Our method got better, or equal, results for 14 of the 19
classes compared to the baseline.

7 Concluding Remarks

In this paper, we have introduced a new framework capable of learning arbitrarily
shaped pairwise potentials in random fields models. In a number of experiments, we
have empirically demonstrated that our developed framework can improve state-of-the-
art CNNs by adding a CRF layer. We have also seen that the learned filters are not
necessarily Gaussian, and may capture other kinds of interactions between labels. In
addition, we have shown advantages of our inference method compared to the com-
monly used mean-field method.

A key factor for the success of deep learning and by now a well-established paradigm
is that the power of convolutions should be used, especially for the first layers in a
CNN. Our work supports that repeated usage of convolutions in the final layers is also
beneficial. We also note that our gradient descent steps resemble the highly successful
RESNET [18], as one step in gradient descent is, in principle, an identity transformation
plus a correction term.

There are several future research avenues that we intend to explore. In our model,
many free variables are introduced and this may lead to over-fitting. One way to com-
pensate would be to collect larger datasets and consider data augmentation. An alterna-
tive approach would be to directly encode geometric shape priors into the random fields
and thereby reducing the required amount of data.
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Input LRR LRR + CRF-Grad Ground truth

Fig. 7. Qualitative results on the CITYSCAPES validation set. Black regions in the ground truth
are ignored during evaluation. Our CRF models contextual relationships between classes, hence
unlike LRR, it does not label “road” as being on top of “sidewalk” (Row 2). Note that the traffic
lights are better segmented with the additional CRF-Grad layer. Adding the CRF-Grad layer
increased the IoU of the class traffic lights from 66.8 to 68.1.
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Supplementary Material

Proof of Proposition 1

LetE(x∗) andE(q∗) denote the optimal values of (5), where x∗ is restricted to boolean
values. Then,

E(x∗) = E(q∗).

Proof. We will show that for any real q, one can obtain a binary x such that E(x) ≤
E(q). In particular, it will be true for x∗ and q∗, which implies E(x∗) = E(q∗).

Let q be given, and letx ∈ LN . One may defineEm(x, q) = E(x1, . . . , xm, qm+1, . . . , qN )
such that each xi or qi is a vector with entries such as qi:λ or xi:λ, but for each i only
one value xi:λ is non-zero (and equal to 1). Since E0 = E(q) and EN = E(x) it will
be sufficient to find a x such that Em(x, q) ≤ Em−1(x, q) for all m. The required x
will be constructed one element at a time.

The key observation is that Em is multilinear in the qi. Then, it follows that

Em−1(x, q) = E(x1, . . . , xm−1, qm, . . . qN )

=
∑
xm∈L

qm:xmE(x1, . . . , xm, qm+1, . . . qN ).

Here, xm is treated as a variable and x1, . . . , xm−1 are fixed. Since
∑
xm∈L qm:xm = 1

there must be at least one choice of xm such thatEm−1(x, q) ≥ E(x1, . . . , xm, qm+1, . . . qm) =
Em(x, q).

Mean-Field Objective

In this section, we give a brief derivation of what is minimized with the mean-field
method. The key idea behind the method is to approximate a complex probability dis-
tribution P by a simpler one Q that one can solve (find its mode), using the simpler
distribution as a stand-in for the actual probability distribution (MRF) of interest. As
previously, we consider a probability distribution P for a random field, given by the
Gibbs distribution. The probability of an assignment x ∈ LN is

P (x) =
1

Z
exp (−E(x)) . (11)

A natural measure commonly used as a measure of distance between two probability
distributions P and Q is the KL divergence D(Q ‖P ) defined by

D(Q ‖P ) =
∑
x∈LN

Q(x) log

(
Q(x)

P (x)

)
= −

∑
x∈LN

Q(x) logP (x)+
∑
x∈LN

Q(x) logQ(x).
(12)
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Now, plugging in the form of the probability P (x) given in (11) into (12), we obtain
D(Q ‖P ) =

−
∑
x∈LN

Q(x) log

(
1

Z
exp (−E(x))

)
+
∑
x∈LN

Q(x) logQ(x)

=
∑
x∈LN

Q(x)E(x) + logZ +
∑
x∈LN

Q(x) logQ(x),

where we have used the fact that
∑
x∈LN Q(x) = 1.

Because logZ is a constant, minimizing the KL divergence between these two dis-
tributions is equivalent to minimizing the following quantity:∑

x∈LN
Q(x)E(x) +

∑
x∈LN

Q(x) logQ(x). (13)

The first term is equal to the expected value of the energy E(x) under the probability
distributionQ; for now we will write this as EQ[E]. Now, consider the second term. The
entropy of a probability distribution Q is equal to −

∑
x∈LN Q(x) logQ(x). Writing

the entropy of Q as H(Q), (13) takes the form

EQ[E]−H(Q), (14)

so the quantity is equal to the expectation of the Gibbs energy under distribution Q
minus the entropy of Q.

Hyperparameter Settings

Weizmann Horse
All the models presented in the experiments section were trained end-to-end with learn-
ing rate of 10−3 (normalized by the number of pixels), momentum 0.9, weight decay
5 · 10−3 and batch size 20. The size of the spatial filters for these runs were 9 × 9
if not specified as other. The number of iterations were set to 5, step size to 0.5 and
unary weight was initialized as 0.5. For the models with bilateral filter s, the number of
neighbours each pixel interacts with in each dimension, were set to 1.

NYU V2
The model used on the NYU V2 data set was trained with learning rate 10−11 (not
normalized), momentum 0.99, weight decay 0.005 and batch size 10. The size of the
spatial filters were set to 9×9 and the bilateral filters to s = 1. The number of iterations
were set to 5, step size to 0.5 and unary weight was initialized as 0.5.

Cityscapes
The model used on the CITYSCAPES data set was trained with a learning rate of 10−3

(normalized by the number of pixels), momentum 0.9 and weight decay 5 · 10−3. The
size of the spatial filters for these runs were 9× 9 and the bilateral filters to s = 1. The
number of iterations were set to 5, step size to 0.5 and unary weight was initialized as
0.5.
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Simplex Projection

As mentioned in the paper we want to project our values onto the simplex4L satisfying∑
λ∈L qi:λ = 1 and 0 ≤ qi:λ ≤ 1 for each step in our gradient descent algorithm. This

is done following the method presented by Chen et al. [13] which is summarized in
Algorithm 2. Note that this projection is done individually for each pixel i, for derivation
of this algorithm we refer to the article.

1. Sort q̃i ∈ RL in ascending order and set k = L - 1

2. Compute ti =
∑L
j=k+1 q̃i:j−1

L−k , If ti ≥ q̃i:k set t̂ = ti and go to step 4, otherwise set
k ← k − 1 and redo step 2, if k = 0 go to step 3

3. Set t̂ =
∑L
j=1 q̃i:j−1

L

4. Return qi, where qi:λ = max
(
q̃i:λ − t̂, 0

)
, λ ∈ L

Algorithm 2: Algorithm 2. Projection of q̃i ∈ RL onto the simplex4L satisfying∑
λ∈L qi:λ = 1 and 0 ≤ qi:λ ≤ 1.

In reality we use a leaky version of the last step of the projection algorithm, i.e.
instead of the max(·, 0) operator we use the following function

fα(q̃i:λ) =

{
q̃i:λ − t̂ 0 ≤ q̃i:λ − t̂

α
(
q̃i:λ − t̂

)
q̃i:λ − t̂ < 0

(15)

where α is a parameter controlling the level of leakage. Note that for α = 0 we
get the the strict max(·, 0) operator. As previously mentioned, the projection is done
individually for each pixel. It can be described as a function f(q̃) : RL → RL, which
Jacobian has the elements

∂fλ
∂q̃µ

=



α
(
1− ∂t̂

∂q̃µ

)
q̃µ − t̂ < 0

1− ∂t̂
∂q̃µ

q̃µ − t̂ ≥ 0
µ = λ{

−α ∂t̂
∂q̃µ

q̃µ − t̂ < 0

− ∂t̂
∂q̃µ

q̃µ − t̂ ≥ 0
µ 6= λ

(16)

where ∂t̂
∂q̃µ

= 1
L−k if q̃µ > t̂ and 0 otherwise (L and k defined as in Algorithm 2).

Knowing the Jacobian, the error derivatives with respect to the input can be computed
during back propagation. The reason for introducing the leaky version is to avoid er-
ror derivatives becoming zero during back propagation. A non-zero α was found to
facilitate the training process considerably with the drawback that we do not necessar-
ily satisfy the constraints in (5). However, one could set α to zero during inference to
strictly satisfy (5).
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Convergence analysis

Since the forward operation of the CRF-Grad layer performs gradient descent, we are
interested in knowing how many iterations are needed to converge. In Fig. 8 we have
plotted the CRF energy as a function of the number of iterations on the WEIZMANN
HORSE data set for the different models. In addition Fig. 9 shows the mean IoU as a
function of the number of iterations for the WEIZMANN HORSE test data. Both of these
results point to the fact that it is sufficient to run the model for about five iterations and
that running it further would not increase the result considerably.

It also might be interesting to investigate the intermediate states qt. in Fig. 10 the
intermediate states of the CRF-Grad layers is shown. This figure gives a good indication
on affect the CRF-Grad layer has. As can be seen in the figure, each step refines the
segmentation slightly, removing spurious outlier pixels classified as horse, in addition
to refining the boundaries slightly.

Also included in the supplementary material is short movie, crfgd2 mov.avi, show-
ing how the CRF energy decreases with each step of our projected gradient descent
algorithm. For this example a Potts model is used and the projected gradient descent
solution is compared to the globally optimal solution obtained by graph cut.

Error Derivatives for the CRF-Grad layer

In this section, we will explicitly formulate the error derivative necessary to train our
deep structure model jointly. The notation used in the section is not very strict. Deriva-
tives, gradients and jacobians are all referred to as derivatives. Denoting the output of
our CRF-Grad layer y we need expressions for the derivatives ∂y

∂z , where z is the out-
put from the CNN and hence also the input to the CRF-Grad layer. In addition we need
to calculate ∂y

∂wu
, ∂y
∂ws

and ∂y
∂wb

to be able to update the weights of the layer. To sim-
plify the notation we abbreviate the update step by qt+1 = f(qt, z, I,w). Note that the
output y = qT where T is the total number of iterations for the RNN. We have

∂y

∂wu
=

∂y

∂qT
∂f(qT−1)

∂wu
+ . . .+

∂y

∂q1
∂f(q0)

∂wu
(17)

∂y

∂ws
=

∂y

∂qT
∂f(qT−1)

∂ws
+ . . .+

∂y

∂q1
∂f(q0)

∂ws
(18)

∂y

∂wb
=

∂y

∂qT
∂f(qT−1)

∂wb
+ . . .+

∂y

∂q1
∂f(q0)

∂wb
(19)

∂y

∂z
=

∂y

∂q0
∂q0

∂z
+

∂y

∂ψu

∂ψu
∂z

, (20)

where ψu denote the unary part of the CRF energy function. Note that

∂y

∂qt−1
=

∂y

∂qt
∂f(qt−1)

∂qt−1
) (21)

To be able to calculate these we need the derivatives of the function f with respect
to qt, wu,ws andwb. We denote the spatial and bilateral filtering operations as ψs ∗qt
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and ψb ∗ qt respectively. An update step can then be written as

qt+1 = Proj4L(q
t − γ(ψu +ψs ∗ qt +ψb ∗ qt))

= Proj4L(q̃
t+1).

And the aforementioned derivatives become

∂f

∂qt
=Proj′4L(q̃

t+1)

·
(
1− γ(ψu +ψs ∗ qt +ψb ∗ qt)

)
·
(
∂(ψs ∗ qt)

∂qt
+
∂(ψb ∗ qt)

∂qt

)
,

(22)

for qt, and for the weights

∂f

∂wu
= Proj′4L(q̃

t+1)·(
−γ(ψu +ψs ∗ qt +ψb ∗ qt

)
· ∂ψu
∂wu

,

(23)

∂f

∂ws
= Proj′4L(q̃

t+1)·

(
−γ(ψu +ψs ∗ qt +ψb ∗ qt

)
· ∂(ψs ∗ q

t)

∂ws
,

(24)

∂f

∂wb
= Proj′4L(q̃

t+1)·

(
−γ(ψu +ψs ∗ qt +ψb ∗ qt

)
· ∂(ψb ∗ q

t)

∂wb
,

(25)

Note that ∂(ψs∗q
t)

∂qt , ∂(ψb∗q
t)

∂qt , ∂(ψs∗q
t)

∂ws
and ∂(ψb∗qt)

∂wb
can be calculated using the back-

ward routines for a standard convolutional layer and bilateral filtering layer described
in the main paper.

Additional Results

In this section we present some additional results from the different datasets. Class-wise
results for the CITYSCAPES dataset is presented in Table 2. For the WEIZMANN HORSE
dataset these results can be seen in Fig. 11, for the CITYSCAPES dataset in Fig. 12 and
for the NYU V2 dataset in Fig. 13.
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Table 2. Class-wise results compairing our model to the baseline, LRR. The results are presented
as IoU (%).
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Fig. 8. CRF energy, as defined in (5), plotted as a function of iterations of the gradient descent
method. These energies are calculated while running the trained models on the WEIZMANN

HORSE dataset, The thin blue lines shows the imagewise energy change while the thicker red
line show the mean. For these calculations the leak factor was set to zero, meaning that the so-
lutions satisfy the constraints of (5). Note that, for presentation purposes, all energies have been
normalized to have the same final energy.
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Fig. 9. Mean IoU plotted as a function of iterations for the WEIZMANN HORSE test data. Note
that, for the non-gaussian versions of the model, the performance of the layer does not increase
after six iterations. The number of iterations were set to five during training.

Input zhorse q1
horse q2

horse q3
horse q4

horse q5
horse Ground truth

Fig. 10. Visualization of intermediate states of the CRF-Grad layer for the WEIZMANN HORSE

dataset. Note how each step of the projected gradient descent algorithm refines the segmentation
slightly, removing spurious outlier pixels classified as horse.
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Fig. 11. Qualitative results on the WEIZMANN HORSE dataset. From left: Original image, Ground
truth, FCN-8s segmentation results, CRF-Grad segmentation results (spatial kernel only), CRF-
Grad segmentation results (spatial and bilateral kernels). Note how adding the CRF-Grad layer
gives more refined segmentations, removing spurious outlier pixels previously classified as horse.
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Input LRR LRR + CRF-Grad Ground truth

Fig. 12. Qualitative results on the CITYSCAPES validation set. Black regions in the ground truth
are ignored during evaluation. Our CRF models contextual relationships between classes, hence
unlike LRR, it does not label “road” as being on top of “sidewalk” (Row 2). Note that the traffic
lights are better segmented with the additional CRF-Grad layer. Adding the CRF-Grad layer
increased the IoU of the class traffic lights from 66.8 to 68.1.
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Input FCN-8s CRF-RNN CRF-Grad Ground truth

Fig. 13. Qualitative results on the NYU V2 dataset. Note that the CRF-Grad captures the shape
of the object instances better compared to the baselines. This effect is perhaps most pronounced
for the paintings hanging on the walls.
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