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Our Approach with Higher Order Potentials 
 We formulate a richer and more expressive CRF model which utilises two Higher Or-

der Potentials (potentials defined over cliques of more than two variables).  

 We use the differentiable Mean Field inference algorithm to obtain the most proba-

ble labelling, and incorporate it as a layer of our neural network. 

 This allows end-to-end training of our Higher Order CRF with an FCN. 

 Detection potential uses the complementary cues of an object detector to improve 

segmentations. It helps in cases where initial unaries are poor. 

 Superpixel potential encourages consistency over larger regions, and removes spuri-

ous noise from the output. 

Formulation 
A Conditional Random Field is defined as 
 

 
 

In our case, the energy (ignoring conditioning on Image ) is: 
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Detection Potential 
Our detection uses the output of an object detector as additional cues for segmenta-

tion. Intuitively, object detectors can help when our pixelwise predictions are incorrect.  

 Assume we have  object detections for a given image.  

 The  detection is of  the form  

  is the class label of the  detection. 

  is the detection score.  

  is the number of foreground pixels in the  detection.  

 Introduce binary latent variables,  — one for each detection 

 Models whether detection is accepted or not. 

  initialised with , the score of the object detector. 

    is a learnable weight parameter that is a function of the class label. 

 

This potential encourages consistency between detections, , and labelled pixels, :   

 

Superpixel Potential 
Our learnable superpixel potential enforces consistency over regions obtained by su-

perpixels. This is a soft constraint using a -Potts type energy [4]. We use superpixels 

over multiple scales, which do not necessarily have to form a hierarchy.  

 
 

Experimental Results on PASCAL VOC 2012 
 

 

Method 
Mean 

IoU [%] 

Baseline (Unary + Pairwise) 72.9 

Superpixels Only 74.0 

Detections Only 74.9 

Superpixels and Detections 75.8 

Method 
Mean 

IoU [%] 
Method 

Mean 

IoU [%] 

Ours 77.9 

DPN [3] 77.5 Centrale [6] 75.7 

Dilated [7] 75.3 BoxSup [8] 75.2 

Attention [9] 75.1 CRF-RNN [2] 74.7 

Table 1: Mean Intersection over Union (IoU) on 
the VOC Test Set compared to other works. 

Table 2: Effect of each Higher Order 
potential on Reduced Validation Set. 
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Figure 3: Qualitative comparison of our baseline with only pairwise potentials [2], and our 
method with higher orders. Our method uses object detection bounding boxes as an addi-

tional input, which are overlaid on the images. 

Figure 2: Output of system without superpixel potentials (left). Superpixels obtained from the 
method of [5]. Only one of the four “layers” is shown (middle). Note how the superpixel 

potentials get rid of spurious noise (right).  

Extension to Instance Segmentation 
We have recently extended our detection potentials for the task of Instance Segmen-

tation [10]. The detections inform us about possible object instances, and the problem 

is then to assign each pixel to an instance represented by a detection.   

 

 
 

   
 

 

 

Figure 4: Instance Segmentation results using our Detection potential, as described in 
[10]. We produce  both semantic segmentations (left) and instance segmentations 

Conclusion 
 Introduced two higher order potentials for a CRF which can be integrated into a 

deep neural network and trained end-to-end.  

 Achieved the best performance on PASCAL VOC 2012 dataset at time of submission.  

 In subsequent work [10], we have showed how our Detection potential can be used 

for the task of Instance Segmentation.  
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Figure 1: We train a Higher Or-
der CRF end-to-end with a pix-
elwise CNN. Our higher orders 
improve significantly over only 
pairwise potentials [2]. 

Aim 
 End-to-end training of a Higher Order Conditional Random Field (CRF) for the prob-

lem of semantic segmentation.  

Background 
 Fully convolutional networks (FCNs) classify pixels independently of each other, and 

produce noisy predictions which do not respect image edges. 

 To combat this, CRFs with pairwise terms [1], encouraging spatial and appearance 

consistency, are usually used as post-processing. 
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