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2. Experimental set-up 
 

We evaluate state-of-art models (Fig. 2) on the Cityscapes and Pascal VOC  

datasets. We use the IoU Ratio metric to account for varying clean accuracy. 

 

We used variants of the FGSM attack for varying  norm constraints. 

FGSM:  
 

Iterative FGSM ll:   

1. Introduction 
 

 Adversarial examples are arguably the greatest challenge affecting DNNs. 

 No effective defence exists yet [1]. 
 

•  We investigate how robust modern DNN-based semantic segmentation mod-

els are to adversarial examples. 

•  We show connections between architectural features of segmentation  

networks and recently proposed defences [2,3,4]. 

•  We also show that the “conventional wisdom” derived from image  

classification does not always hold on different tasks and large-scale datasets. 

 

 

 

Fig. 1. Adversarial example created with an imperceptible        norm of 4. All 
networks are severely affected, but to different degrees. 

3. Robustness of various DNN architectures 
 

Figure 2 evaluates several state-of-art architectures on Cityscapes and VOC. 

 

 

 

 

 

 

 

 

 
 

•  Models with residual connections are inherently more robust than chain-like 

VGG-based networks 

•  This holds also for lightweight models (E-Net and ICNet), contrary to [5, 6]. 

•  Accuracy on clean inputs and robustness is correlated, though the most  

accurate (PSPNet) is not the most robust model (DeepLab v2 MS). 

•  Perturbations that do not change integral RGB values degraded all models. 

4.2 Other Input Transformations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

•  Many other transformations (besides scale) that CNNs are not invariant to. 

•  Performed JPEG recompression, Gaussian blur, HSV jittering and Grayscale con-

version with randomised parameters. In all cases, randomised input transfor-

mations markedly increased robustness (Fig. 3). 

•  Easily subverted if we include knowledge of transformation into the attack 
 

 

 

•  Many proposed defences based on input transformations (i.e. [2, 3] among oth-

ers) were not evaluated correctly (and do not apply Kerckhkoff’s principle [7]). 

•  Corroborates findings that producing physical adversarial examples is difficult 

[8] - an object may undergo a myriad of transformations before camera capture. 

5. Conditional Random Fields (CRFs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

•  CRFs are often used to enforce smoothness and other consistency priors. 

•  Mean-field inference naturally performs gradient masking. 

•  CRFs are thus more robust to white-box attacks, but vulnerable to targeted  

attacks and transfer, black-box attacks as shown in Fig. 4. 

4.1 Multiscale Processing 

 

•  Multiscale processing (Deeplab v2) increases robustness, and white-box  

attacks on such networks produce more transferable black-box perturbations. 

•  CNNs are not invariant to scale (and many other transformations). As such, 

predictions on rescaled adversarial inputs change to become less malignant. 

Same effect when the network is trained with or without multiscale averaging. 

FGSM Iterative FGSM ll 
Network  

50% 75% 100% Multiscale 50% 75% 100% Multiscale 
Deeplab v2 50% 37.3 70.5 84.8 60.3 18.0 92.0 96.9 20.0 

Deeplab v2 75% 85.5 39.7 62.2 50.8 99.5 17.9 89.9 20.4 

Deeplab v2 100% 93.6 57.9 37.7 37.2 100.0 79.0 15.5 16.8 

Deeplab v2 Mutiscale 83.7 57.6 62.3 53.1 99.6 90.2 91.9 21.5 

Deeplab v2 100% (VGG) 94.3 70.6 66.9 66.5 98.9 88.4 86.3 80.9 

FCN8 (VGG) 94.7 67.2 65.8 65.4 98.4 85.2 84.9 78.5 

FCN8 (ResNet) 94.0 66.3 63.5 63.1 99.4 82.6 80.3 74.1 

Table 1. Transferability of perturbations from different scales of Deeplab v2  

 a) Pascal VOC  b) Cityscapes 

Fig. 2. Robustness of various models on VOC (a) and Cityscapes (b).  
Models are ordered according to clean accuracy. 

Fig. 3. Randomised input transformations only confer robustness when the at-
tack is oblivious to it (left). Otherwise, their benefits are marginal (right). 

Fig. 4. Mean-field inference of CRFs produces confident estimates which mask 
gradients. As such, it is only robust to untargeted attacks. 

a) Untargeted attack b) Targeted attack c) Black-box attack 

Input image (perturbed half on right) Ground Truth PSPNet 

DilatedNet ICNet CRF-RNN 


