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Adversarial examples are arguably the greatest challenge affecting DNNSs. Figure 2 evaluates several state-of-art architectures on Cityscapes and VOC. ~JPEG recompressior ~JPEG recompression
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classification does not always hold on different tasks and large-scale datasets. a) Pascal VOC b) Cityscapes
Flg. 2. Robustness of various models on VOC (a) and Cityscapes (D). e Many other transformations (besides scale) that CNNs are not invariant to.

Moaels are ordered according to clean accuracy. e Performed JPEG recompression, Gaussian blur, HSV jittering and Grayscale con-

e Models with residual connections are inherently more robust than chain-like version with randomised parameters. In all cases, randomised input transfor-
VGG-based networks mations markedly increased robustness (Fig. 3).

e This holds also for lightweight models (E-Net and ICNet), contrary to [5, 6]. e Easily subverted if we include knowledge of transformation into the attack

e Accuracy on clean inputs and robustness is correlated, though the most x%Y = clip (xfg"d"' — o - sign( ﬂtNTvx?de(f(t(X?dv); 9), yi1), e)) .

accurate (PSPNet) is not the most robust model (DeeplLab v2 MS). e Many proposed defences based on input transformations (i.e. [2, 3] among oth-

e Perturbations that do not change integral RGB values degraded all models. ers) were not evaluated correctly (and do not apply Kerckhkoff's principle [7]).

e Corroborates findings that producing physical adversarial examples is difficult
[8] - an object may undergo a myriad of transformations before camera capture.
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Fig. 1. Adversarial example created with an imperceptible (., norm of 4. All 5. Conditional Random Fields (CRFs)
networks are severely affectea, but to different degrees. e Multiscale processing (Deeplab v2) increases robustness, and white-box T — o e
attacks on such networks produce more transferable black-box perturbations. olllfl gy . Emee ogll ¢ Eemwiem M e
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e CNNs are not invariant to scale (and many other transformations). As such, £ £ BT
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We evaluate state-of-art models (Fig. 2) on the Cityscapes and Pascal VOC Table 1. Transferability of perturbations from different scales of Deeplab v2 (€ = 8) a) Untargeted attack b) Targeted attack ) Black-box attack
datasets. We use the /oU Ratio metric to account for varying clean accuracy. Fig. 4. Mean-field inference of CRFs produces confident estimates which mask

gradients. As such, it is only robust to untargeted attacks.
: . / . Deeplab v2 50% 37.3 70.5 84.8 60.3 18.0 92.0 96.9 20.0
We used variants of the FGSM attack for varying oo NOrm constraints. Deeplab v2 75% 85.5 39.7 62.2 50.8 99.5 17.9 89.9 20.4 e CRFs are often used to enforce smoothness and other C()nsistency priors,
adv o , Deeplab v2 100% 93.6 57.9 37.7 37.2 100.0 79.0 15.5 16.8 . . . .
FGSM: x*" = x + € - sign(Vx L(f(x;0),y))- Deeplab v2 Mutiscale 83.7 57.6 62.3 53.1 99.6 90.2 91.9 21.5 e Mean-field inference naturally performs gradient masking.
- L 0V 7 adv _ & adv, Deeplab v2 100% (VGG . . . 66.5 . . . 80.9 -

terative FGSM II: x;}1; = clip(x; a - sign(Vyeaw L(f (x5 0), 511)), €). . . . oy . . . o e CRFs are thus more robust to white-box attacks, but vulnerable to targeted

"CN8 (ResNet) 94.0 66.3 63.5 63.1 994 82.6 80.3 74.1 attacks and transfer, black-box attacks as shown in Fig. 4.
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