Holistic, Instance-level Human Parsing

Qizhu Li*, Anurag Arnab*, Philip Torr

* Indicates equal contribution by the authors

05 September 2017

1. Objective

Instance-aware body part segmentation of humans

2. Methodology

1. Do category-level body part segmentation

2. Detect humans

3. Use the **instance-level segmentation module** to assign instance labels.

2.1 Methodology: Instance-level segmentation module

E(V = v) is the energy of V taking a particular value v

2.1.1 Methodology: Box term

• Input 1: human detections:

- scores s_i and bounding boxes B_i for $1 \le i \le D$
- Input 2: semantic segmentation network output:
 - Feature map Q with P + 1 channels (P = 6 here)

• Output:

$$\psi_{Box} \left(V_k = (i, j) \right) = \begin{cases} s_i Q_k(j), & k \in B_i \\ 0, & k \notin B_i \end{cases}$$

for $(i, j) \in \{1, 2, ..., D\} \times \{1, 2, ..., P\}$

Input 1: Human detections

Input 2: Semantic body part segmentation probability maps

2.1.2 Methodology: Global term

- Input: semantic segmentation network output:
 Feature map Q with P + 1 channels (P = 6 here)
- Output:

$$\psi_{Global}(V_k = (i, j)) = Q_k(j)$$

for $(i, j) \in \{1, 2, ..., D\} \times \{1, 2, ..., P\} \cup \{0, 0\}$

Input 1: Number of human detections

4

Input 2: Semantic body part segmentation probability maps

PHORE -		-	(and a second		RPRA	A CONTRACT		
Output: Global terms								
	0000	NN 0 0	0 64 64 60 6	o P INN I		n on Q (1 ² /		
i	0000	NN O A	0 CL DJ DJ D	o p is og l				
i i	0000	NN O A	0 01 04 00 0	o p is og l				
	0000		0 64 64 60 6	PROI				

2.2 Methodology: Loss function

• Observation: permuting the label IDs in an instance segmentation ground truth produces an equally valid ground truth.

Figure 1. Permutations of ground truth labels are equally valid

2.2 Methodology: Loss function

- \bullet We match ground truth ${\mathcal Y}$ to prediction ${\mathcal P}$ before we carry out loss calculation.
- Matched ground truth is given by: $\mathcal{Y}^* = \underset{Z \in \pi(\mathcal{Y})}{\operatorname{argmax}} \operatorname{IoU}(\mathcal{Z}, \mathcal{P})$
- Then cross-entropy loss is calculated as per normal

(a) Prediction (a) Matched GT (a) Ground Truth Figure 2. Ground truth is matched to our prediction before calculating loss

2.3 Methodology: Obtaining segmentation at other granularities

Mathad	IoU Threshold			۸D۲	
Method	0.5	0.6	0.7	AP _{vol}	
MNC	38.8	28.1	19.3	36.7	
Ours, piecewise, box term only	38.0	27.4	16.7	36.6	
Ours, piecewise	38.8	28.5	17.6	37.3	
Ours, end-to-end	39.0	28.6	17.4	37.7	
Ours, piecewise, box term only, OHEM	38.7	28.9	17.5	36.7	
Ours, piecewise, OHEM	39.7	29.7	18.7	37.4	
Ours, end-to-end, OHEM	40.6	30.4	19.1	38.4	

Table 2. Ablation study and comparison of AP^r at various thresholds to MNC on Pascal Person-Parts test set. $AP_{vol}^r = \frac{1}{9}\sum_{t=1}^{9} AP_{t/10}^r$.

Success cases...

Failure cases...

Comparison to MNC...

3.2 Results: Human instance segmentation

Mathada	IoU Thresholds					
Methous	0.5	0.6	0.7	0.8	0.9	AP _{vol}
SDS	47.9	31.8	15.7	3.3	0.1	-
Chen et al.	48.3	35.6	22.6	6.5	0.6	-
PFN	48.4	38.0	26.5	16.5	5.9	41.3
Arnab et al.	58.6	52.6	41.1	30.4	10.7	51.8
R2-IOS	60.4	51.2	33.2	-	-	-
Arnab et al.	65.6	58.0	46.7	33.0	14.6	57.4
Ours, piecewise	64.0	59.8	51.0	38.3	20.1	57.2
Ours, end-to-end	70.2	63.1	54.1	41.0	19.6	61.0

Table 3. Comparison of AP^r at various thresholds for instance-level human segmentation on the VOC 2012 validation set. $AP_{vol}^r = \frac{1}{9}\sum_{t=1}^{9} AP_{t/10}^r$.

3.2 Results: Human instance segmentation

Comparison to MNC... (We run the public MNC model on Pascal Person-Parts test set)

MNC

Ours

Ground truth

Input

MNC

Ours

Ground truth

3.3 Results: Semantic segmentation of body parts

Method	IoU [%]
Deeplab	53.0
Attention	56.4
HAZN	57.5
LG-LSTM	58.0
Graph LSTM	60.2
Deeplab-v2	64.9
RefineNet	68.6
Ours, pre-trained	65.9
Ours, final network	66.3

Table 4. Comparison of semantic part segmentation results on the Pascal Person-Parts test set.

The End

Thank you!

Appendix

Methodology: Category-level segmentation module

Figure 2. Comparison of our category-level segmentation module to Deeplab-v2

Methodology: Category-level segmentation module

	Test IoU [%]	Memory [GB]	Time [s] (fps [s ⁻¹])
Deeplab-v2	64.4	9.5	0.396 (2.5)
Deeplab-v2+CRF	64.9	11.2	0.960(1.0)
Ours	65.9	4.3	0.255 (3.9)

Table 1. Comparison of our category-level segmentation module to Deeplab-v2. Tests done on the Pascal Person-Parts dataset. Memory and time requirements are for a single forward pass of the network.

Experiments

Training steps:

- 1. Pretrain the **semantic segmentation network** on all VOC 2012 train and SBD images minus VOC 2012 val and Pascal Person-Parts test to learn the VOC 21 classes.
- 2. Finetune the model on Pascal Person-Parts training set to predict the 7 body part classes (including the background class).
- 3. Train a **human detector** on VOC 07+12 trainval images minus VOC 2012 val and Pascal Person-Parts test images. We use the publicly available R-FCN framework.
- 4. Finetune the **full instance model** end-to-end.

