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Abstract

Object parsing – the task of decomposing an object into its semantic parts – has
traditionally been formulated as a category-level segmentation problem. Consequently,
when there are multiple objects in an image, current methods cannot count the number
of objects in the scene, nor can they determine which part belongs to which object. We
address this problem by segmenting the parts of objects at an instance-level, such that
each pixel in the image is assigned a part label, as well as the identity of the object it be-
longs to. Moreover, we show how this approach benefits us in obtaining segmentations
at coarser granularities as well. Our proposed network is trained end-to-end given detec-
tions, and begins with a category-level segmentation module. Thereafter, a differentiable
Conditional Random Field, defined over a variable number of instances for every input
image, reasons about the identity of each part by associating it with a human detection.
In contrast to other approaches, our method can handle the varying number of people
in each image and our holistic network produces state-of-the-art results in instance-level
part and human segmentation, together with competitive results in category-level part
segmentation, all achieved by a single forward-pass through our neural network.

1 Introduction
Object parsing, the segmentation of an object into semantic parts, is naturally performed by
humans to obtain a more detailed understanding of the scene. When performed automatically
by computers, it has many practical applications, such as in human-robot interaction, human
behaviour analysis and image descriptions for the visually impaired. Furthermore, detailed
part information has been shown to be beneficial in other visual recognition tasks such as
fine-grained recognition [47], human pose estimation [13] and object detection [37]. In
this paper, we focus on the application of parsing humans as it is more commonly studied,
although our method makes no assumptions on the type of object it is segmenting.

In contrast to existing human parsing approaches [18, 29, 45], we operate at an instance
level (to our knowledge, we are the first work to do so). As shown in Fig. 1, not only do we
segment the various body parts of humans (Fig. 1b), but we associate each of these parts to
one of the humans in the scene (Fig. 1c), which is particularly important for understanding
scenes with multiple people. In contrast to existing instance segmentation work [10, 31,
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(a) Input image (b) Category-level (c) Instance-level (d) Instance-level
Part Segmentation Part Segmentation Human Segmentation

Figure 1: Our proposed approach segments human parts at an instance level (c) (which to
our knowledge is the first work to do so) from category-level part segmentations produced
earlier in the network (b). Moreover, we can easily obtain human instance segmentations (d)
by taking the union of all pixels associated to a particular person. Therefore, our proposed
end-to-end trained neural network parses humans into semantic parts at both category and
instance level in a single forward-pass. Best viewed in colour.

34], we operate at a more detailed part level, enabling us to extract more comprehensive
information of the scene. Furthermore, with our part-level instance segmentation of humans,
we can easily recover human-level instance segmentation (by taking the union of all parts
assigned to a particular instance as shown in Fig. 1d), and we show significant improvement
over previous state-of-the-art in human instance-segmentation when doing so.

Our approach is based on a deep Convolutional Neural Network (CNN), which consists
of an initial category-level part segmentation module. Using the output of a human detector,
we are then able to associate segmented parts with detected humans in the image using a
differentiable Conditional Random Field (CRF), producing a part-level instance segmenta-
tion of the image. Our formulation is robust to false-positive detections as well as imperfect
bounding boxes which do not cover the entire human, in contrast to other instance segmen-
tation methods based on object detectors [10, 20, 21, 26, 34]. Given object detections, our
network is trained end-to-end, given detections, with a novel loss function which allows us
to handle a variable number of human instances on every image.

We evaluate our approach on the Pascal Person-Parts [8] dataset, which contains humans
in a diverse set of poses and occlusions. We achieve state-of-the-art results on instance-
level segmentation of both body parts and humans. Moreover, our results on semantic part
segmentation (which is not-instance aware) is also competitive with current state-of-the-
art. All of these results are achieved with a holistic, end-to-end trained model which parses
humans at both an instance and category level, and outputs a dynamic number of instances
per image, all in a single forward-pass through the network.

2 Related Work
The problem of object parsing, which aims to decompose objects into their semantic parts,
has been addressed by numerous works [27, 29, 38, 43, 45], most of which have concentrated
on parsing humans. However, none of the aforementioned works have parsed objects at
an instance level as shown in Fig. 1, but rather category level. In fact, a lot of work on
human parsing has focussed on datasets such as Fashionista [46], ATR [27] and Deep Fashion
[35] where images typically contain only one, centred person. The notion of instance-level
segmentation only matters when more than one person is present in an image, motivating
us to evaluate our method on the Pascal Person-Parts dataset [8] where multiple people can
appear in unconstrained environments. Recent human parsing approaches have typically
been similar to semantic segmentation works using fully convolutional networks (FCNs)
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[36], but trained to label parts [5, 6, 7] instead of object classes. However, methods using
only FCNs do not explicitly model the structure of a human body, and typically do not
perform as well as methods which do [29]. Structural priors of the human body have been
encoded using pictorial structures [15, 17], Conditional Random Fields (CRFs) [4, 23, 25,
43] and more recently, with LSTMs [29, 30]. The HAZN approach of [45] addressed the
problem that some parts are often very small compared to other parts and difficult to segment
with scale-variant CNNs. This scale variation was handled by a cascade of three separately-
trained FCNs, each parsing different regions of the image at different scales.

An early instance segmentation work by Winn et al. [44] predicted the parts of an object,
and then encouraged these parts to maintain a spatial ordering, characteristic of an instance,
using asymmetric pairwise potentials in a CRF. However, subsequent work has not operated
at a part level. Zhang et al. [48, 49] performed instance segmentation of vehicles using an
MRF. However, this graphical model was not trained end-to-end as done by [3, 32, 51] and
our approach. Furthermore, they assumed a maximum of 9 cars per image. Approaches using
recurrent neural networks [39, 40] can handle a variable number of instances per image by
segmenting an instance per time-step, but are currently restricted to only one object category.
Our method, on the other hand, is able to handle both an arbitrary number of objects, and
multiple object categories in the image with a single forward-pass through the network.

Various methods of instance segmentation have also involved modifying object detection
systems to output segments instead of bounding boxes [10, 20, 21, 26]. However, these
methods cannot produce a segmentation map of the image, as shown in Fig. 1, without post-
processing as they consider each detection independently. Although our method also uses an
object detector, it considers all detections in the image jointly with an initial category-level
segmentation, and produces segmentation maps naturally where one pixel cannot belong to
multiple instances in contrast to the aforementioned approaches. The idea of combining
the outputs of a category-level segmentation network and an object detector to reason about
different instances was also presented by [1]. However, that system was not trained end-to-
end, could not segment instances outside the detector’s bounding box, and did not operate at
a part level.

3 Proposed Approach
Our network (Fig. 2) consists of two components: a category-level part segmentation mod-
ule, and an instance segmentation module. As both of these modules are differentiable, they
can be integrated into a single network and trained jointly. The instance segmentation mod-
ule (Sec. 3.2) uses the output of the first category-level segmentation module (Sec. 3.1) as
well as the outputs of an object detector as its input. It associates each pixel in the category-
level segmentation with an object detection, resulting in an instance-level segmentation of
the image. Given a H×W ×3 input image, I, the category-level part segmentation module
produces a H×W × (P+1) dimensional output Q where P is the number of part classes in
the dataset and one background class. There can be a variable number, D, of human detec-
tions per image, and the output of the instance segmentation module is an H×W × (PD+1)
tensor denoting the probabilities, at each pixel in the image, of each of the P part classes
belonging to one of the D detections.

Two challenges of instance segmentation are the variable number of instances in every
image, and the fact that permutations of instance labels lead to identical results (in Fig. 1,
how we order the different people does not matter). Zhang et al. [48, 49] resolve these issues
by assuming a maximum number of instances and using the ground-truth depth ordering
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Figure 2: Our proposed approach. An H ×W × 3 image is input to a human detection
network and a body parts semantic segmentation network, producing D detections of human
and an H×W × (P+ 1) dimensional feature map respectively, where (P+ 1) is the size of
the semantic label space including a background class. These results are used to form the
unary potentials of an Instance CRF which performs instance segmentation by associating
labelled pixels with human detections. In the above diagram, dotted lines represent forward
only paths, and solid lines show routes where both features and gradients flow. The green
boxes form the instance-level segmentation module (Sec. 3.2). Best viewed in colour.

of instances respectively. Others have bypassed both of these issues by predicting each
instance independently [10, 20, 21, 26], but this also allows a pixel to belong to multiple
instances. Instead, we use a loss function (Sec 3.3) that is based on “matching” the prediction
to the ground-truth, allowing us to handle permutations of the ground truth. Furthermore,
weight-sharing in our instance segmentation module allows us to segment a variable number
of instances per image. As a result, we do not assume a maximum number of instances,
consider all instances jointly, and train our network end-to-end, given object detections.

3.1 Category-level part segmentation module

The part segmentation module is a fully convolutional network [36] based on ResNet-101
[22]. A common technique, presented in [6, 7], is to predict the image at three different
scales (with network weights shared among all the scales), and combine predictions together
with learned, image-dependent weights. We take a different approach of fusing information
at multiple scales – we pool the features after res5c [22] at five different resolutions (by
varying the pooling stride), upsample the features to the resolution before pooling, and then
concatenate these features before passing them to the final convolutional classifier, as pro-
posed in [50]. As we show in Sec 4.4, this approach achieves better semantic segmentation
results than [6, 7]. We denote the output of this module by the tensor, Q, where Qi(l) is the
probability of pixel i being assigned label l ∈ {0,1,2, ...,P}. Further details of this module
are included in the appendix.

3.2 Instance-level segmentation module

This module creates an instance-level segmentation of the image by associating each pixel
in the input category-level segmentation, Q, with one of the D input human-detections or
the background label. Let there be D input human-detections for the image, where the i-th
detection is represented by Bi, the set of pixels lying within the four corners of its bounding
box, and si ∈ [0,1], the detection score. We assume that the 0-th detection refers to the
background label. Furthermore, we define a multinomial random variable, Vi, at each of the
N pixels in the image, and let V = [V1,V2, ...,VN ]

>. This variable can take on a label from the
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set {1,2, ...,D}×{1,2, ...,P}∪{(0,0)} since each of the P part labels can be associated with
one of the D human detections, or that pixel could belong to the background label, (0,0).

We formulate a Conditional Random Field over these V variables, where the energy of
the assignment v to all of the instance variables V consists of two unary terms, and one
pairwise term (whose weighting co-efficients are all learned via backpropagation):

E(V = v) =−
N

∑
i

ln [w1ψBox(vi)+w2ψGlobal(vi)+ ε]+
N

∑
i< j

ψPairwise(vi,v j). (1)

The unary and pairwise potentials are computed within our neural network, differentiable
with respect to their input and parameters, and described in Sec. 3.2.1 through 3.2.3. The
Maximum-a-Posteriori (MAP) estimate of our CRF (since the energy in Eq. 1 characterises a
Gibbs distribution) is computed as the final labelling produced by our network. We perform
the iterative mean-field inference algorithm to approximately compute the MAP solution by
minimising Eq. 1. As shown by Zheng et al. [51], this can be formulated as a Recurrent
Neural Network (RNN), allowing it to be trained end-to-end as part of a larger network.
However, as our network is input a variable number of detections per image, D, the label
space of the CRF is dynamic. Therefore, unlike [51], the parameters of our CRF are not
class-specific to allow for this variable number of “channels”.

3.2.1 Box Consistency Term

We observe that in most cases, a body part belonging to a person is located inside the bound-
ing box of the person. Based on this observation, the box consistency term is employed
to encourage pixel locations inside a human bounding box Bi to be associated with the i-th
human detection. The box term potential at spatial location k for body part j of a human i is
assigned either 0 for k /∈ Bi, or the product of the detection score, si, and the category-level
part segmentation confidence, Qk( j), for k ∈ Bi. For (i, j) ∈ {1, 2, ... ,D}×{1, 2, ... ,P},

ψBox(Vk = (i, j)) =

{
siQk( j) if k ∈ Bi

0 otherwise.
(2)

Note that this potential may be robust to false-positive detections when the category-level
segmentation and human detection do not agree with each other, since Qk(l), the probability
of a pixel k taking on body-part label l, is low. Furthermore, note that we use one human-
detection to reason about the identity of all parts which constitute that human.

3.2.2 Global Term

A possible shortcoming for the box consistency potential is that if some pixels belonging
to a human instance fall outside the bounding box and are consequently assigned 0 for the
box consistency term potential, they would be lost in the final instance segmentation predic-
tion. Visually, the generated instance masks would appear truncated along the bounding box
boundaries – a problem suffered by [1, 10, 21, 26]. To overcome this undesirable effect, we
introduce the global potential: it complements the box consistency term by assuming that a
pixel is equally likely to belong to any one of the detected humans. It is expressed as

ψGlobal(Vk = (i, j)) = Qk( j), (3)

for (i, j) ∈ {1,2, ...,D}×{1,2, ...,P}∪{(0,0)}.
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Prediction, P Original ground-truth, Y “Matched” ground-truth, Y∗

Figure 3: As different permutations of the ground-truth are equivalent in the case of instance
segmentation, we “match” the original ground-truth, Y , to our network’s prediction, P , to
obtain the “matched” ground-truth which we use to compute our loss during training.

3.2.3 Pairwise Term

Our pairwise term is composed of densely-connected Gaussian kernels [24] which are com-
monly used in segmentation literature [5, 51]. This pairwise potential encourages both spatial
and appearance consistency, and we find these priors to be suitable in the case of instance-
level segmentation as well. As in [51], the weighting parameters of these potentials are
learned via backpropagation, though in our case, the weights are shared among all classes.

3.3 Loss function and network training
We first pre-train the category-level segmentation part of our network, as described in the ap-
pendix. Thereafter, we add the instance segmentation module, and train with a permutation-
invariant loss function which is backpropagated through both our instance- and category-
level segmentation networks. Since all permutations of an instance segmentation have the
same qualitative result, we “match” the original ground-truth to our prediction before com-
puting the loss, as shown in Fig. 3. This matching is based on the Intersection over Union
(IoU) [14] of a predicted and ground-truth instance, similar to [40]. Let Y = {y1,y2, ...,ym},
a set of m segments, denote the ground-truth labelling of an image, where each segment is
an instance and has a part label assigned to it. Similarly, let P = {p1, p2, ..., pn} denote our
n predicted instances, each with an associated part label. Note that m and n need not be the
same as we may predict greater or fewer instances than there actually are in the image. The
“matched” ground truth, Y∗ is the permutation of the original ground-truth labelling which
maximises the IoU between our prediction, P and ground-truth

Y∗ = argmax
Z∈π(Y)

IoU(Z,P), (4)

where π(Y) denotes the set of all permutations of Y . Note that we define the IoU between
all segments of different labels to be 0. Eq. 4 can be solved efficiently using the Hungarian
algorithm as it can be formulated as a bipartite graph matching problem, and once we have
the “matched” ground-truth, Y∗, we can apply any loss function to it and train our network
for segmentation.

In our case, we use the standard cross-entropy loss function on the “matched” ground
truth. In addition, we employ Online Hard Example Mining (OHEM), and only compute our
loss over the top K pixels with the highest loss in the training mini-batch. We found that
during training, many pixels already had a high probability of being assigned to the correct
class. By only selecting the top K pixels with the highest loss, we are able to encourage
our network to improve on the pixels it is currently misclassifying, as opposed to increasing
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the probability of a pixel it is already classifying correctly. This approach was inspired by
“bootstrapping” [12, 42] or “hard-negative mining” [16] commonly used in training object
detectors. However, these methods mined hard examples from the entire dataset. Our ap-
proach is most similar to [41], who mined hard examples online from each mini-batch in the
context of detection. Similar to the aforementioned works, we found OHEM to improve our
overall results, as shown in Sec. 4.2.

3.4 Obtaining segmentations at other granularities

Given the part instance prediction produced by our proposed network, we are able to easily
obtain human instance segmentation and semantic part segmentation. In order to achieve
human instance segmentation, we map the predicted part instance labels (i, j), i.e. part j of
person i, to i. Whereas to obtain semantic part segmentation, we map predicted part instance
labels (i, j) to j instead.

4 Experiments

We describe our dataset and experimental set-up in Sec. 4.1, before presenting results on
instance-level part segmentation (Fig. 1c), instance-level human segmentation (Fig. 1d) and
semantic part segmentation (Fig. 1b). Additional quantitative and qualitative results, failure
cases and experimental details are included in the appendix.

4.1 Experimental Set-up

We evaluate our proposed method on the Pascal Person-Part dataset [13] which contains 1716
training images, and 1817 test images. This dataset contains multiple people per image in
unconstrained poses and environments, and contains six human body part classes (Fig. 1b),
as well as the background label. As described in Sec. 3.3, we initially pre-train our category-
level segmentation module before training for instance-level segmentation. This module is
first trained on the 21 classes of the Pascal VOC dataset [14], and then finetuned on the seven
classes of the Pascal Part training set using category-level annotations. Finally, we train for
instance segmentation with instance-level ground truth. Full details of our training process,
including all hyperparameters such as learning rate, are in the appendix. To clarify these
details, we will also release our code.

We use the standard APr metric [20] for evaluating instance-level segmentation: the
mean Average Precision of our predictions is computed where a prediction is considered
correct if its IoU with a ground-truth instance is above a certain threshold. This is similar
to the AP metric used in object detection. However, in detection, the IoU between ground-
truth and predicted bounding boxes is computed, whereas here, the IoU between regions is
computed. Furthermore, in detection, an overlap threshold of 0.5 is used, whereas we vary
this threshold. Finally, we define the APr

vol which is the mean of the APr score for overlap
thresholds varying from 0.1 to 0.9 in increments of 0.1.

We use the publicly available R-FCN detection framework [11], and train a new model
with data from VOC 2012 [14] that do not overlap with any of our test sets. We train with
all object classes of VOC, and only use the output for the human class. Non-maximal sup-
pression is performed on all detections before being fed into our network.
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Table 1: Comparison of APr at various IoU thresholds for instance-level part segmentation
on the Pascal Person-Parts dataset

Method IoU threshold
APr

vol0.5 0.6 0.7

MNC [10] 38.8 28.1 19.3 36.7

Ours, piecewise trained, box term only* 38.0 27.4 16.7 36.6
Ours, piecewise trained 38.8 28.5 17.6 37.3
Ours, end-to-end trained 39.0 28.6 17.4 37.7

Ours, piecewise trained, box term only, OHEM 38.7 28.9 17.5 36.7
Ours, piecewise trained, OHEM 39.7 29.7 18.7 37.4
Ours, end-to-end trained, OHEM 40.6 30.4 19.1 38.4

*Model is equivalent to our reimplementation of [1]

4.2 Results on Instance-level Part Segmentation
Table 1 shows our results on part-level instance segmentation on the Pascal Person-Part
dataset. To our knowledge, we are the first work to do this, and hence we study the ef-
fects of various design choices on overall performance. We also use the publicly available
code for MNC [10], which won the MS-COCO 2016 instance segmentation challenge, and
finetune their public model trained on VOC 2011 [19] on Person-Part instances as a baseline.

We first train our model in a piecewise manner, by first optimising the parameters of the
category-level segmentation module, and then “freezing” the weights of this module and only
training the instance network. Initially, we only use the box consistency term (Sec. 3.2.1) in
the Instance CRF, resulting in an APr at 0.5 of 38.0%. Note that this model is equivalent to
our reimplementation of [1]. Adding in the global potential (Sec. 3.2.2) helps us cope with
bounding boxes which do not cover the whole human, and we see an improvement at all
IoU thresholds. Training our entire network end-to-end gives further benefits. We then train
all variants of our model with OHEM, and observe consistent improvements across all IoU
thresholds with respect to the corresponding baseline. Here, we set K = 215, meaning that
we computed our loss over 215 or approximately 12% of the hardest pixels in each training
image (since we train at full resolution). We also employ OHEM when pre-training the
category-level segmentation module of our network, and observe minimal difference in the
final result if we use OHEM when training the category-level segmentation module but not
the instance segmentation module. Training end-to-end with OHEM achieves 2.6% higher
in APr at 0.5, and 1.8% higher APr

vol over a piecewise-trained baseline model without OHEM
and only the box term (second row), which is equivalent to the model of [1]. Furthermore,
our APr

vol is 1.7% greater than the strong MNC [10] baseline. Note that although [21] also
performed instance-level segmentation on the same dataset, their evaluation was only done
using human instance labels, which is similar to our following experiment on human instance
segmentation.

4.3 Results on Human Instance Segmentation
We can trivially obtain instance-level segmentations of humans (Fig 1d), as mentioned in
Sec. 3.4. Table 2 shows our state-of-the-art instance segmentation results for humans on the
VOC 2012 validation set [14]. We use the best model from the previous section as there is
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Table 2: Comparison of APr at various IoU thresh-
olds for instance-level human segmentation on the VOC
2012 validation set

Method IoU threshold
APr

vol0.5 0.6 0.7 0.8 0.9

SDS [20] 47.9 31.8 15.7 3.3 0.1 –
Chen et al. [9] 48.3 35.6 22.6 6.5 0.6 –
PFN [28] 48.4 38.0 26.5 16.5 5.9 41.3
Arnab et al. [1]* 58.6 52.6 41.1 30.4 10.7 51.8
R2-IOS [31] 60.4 51.2 33.2 – – –
Arnab et al. [2]* 65.6 58.0 46.7 33.0 14.6 57.4

Ours, piecewise 64.0 59.8 51.0 38.3 20.1 57.2
Ours, end-to-end 70.2 63.1 54.1 41.0 19.6 61.0

*Results obtained from supplementary material.

Table 3: Comparison of seman-
tic part segmentation results on
the Pascal Person-Parts test set

Method IoU [%]

DeepLab* [5] 53.0
Attention [7] 56.4
HAZN [45] 57.5
LG-LSTM [30] 58.0
Graph LSTM [29] 60.2
DeepLab v2 [6] 64.9
RefineNet [33] 68.6

Ours, pre-trained 65.9
Ours, final network 66.3

*Result reported in [45]

no overlap between the Pascal Person-Part training set, and the VOC 2012 validation set.
As Tab. 2 shows, our proposed approach outperforms previous state-of-the-art by a sig-

nificant margin, particularly at high IoU thresholds. Our model receives extra supervision
in its part labels, but the fact that our network can implicitly infer relationships between
different parts whilst training may help it handle occluding instances better than other ap-
proaches, leading to better instance segmentation performance. The fact that our network is
trained with part-level annotations may also help it identify small features of humans bet-
ter, leading to more precise segmentations and thus improvements at high APr thresholds.
Our APr at each IoU threshold for human instance segmentation is higher than that for part
instance segmentation (Tab. 1). This is because parts are smaller than entire humans, and
thus more difficult to localise accurately. An alternate method of performing instance-level
part segmentation may be to first obtain an instance-level human segmentation using another
method from Tab. 2, and then partition it into the various body parts of a human. How-
ever, our approach, which groups parts into instances, is validated by the fact that it achieves
state-of-the-art instance-level human segmentation performance.

4.4 Results on Category-level Part Segmentation
Finally, our model is also able to produce category-level segmentations (as shown in Fig. 1b).
This can be obtained from the output of the category-level segmentation module, or from our
instance module as described in Sec. 3.4. As shown in Tab. 3, our semantic segmentation
results are competitive with current state-of-the-art. By training our entire network consisting
of the category-level and instance-level segmentation modules jointly, and then obtaining
the semantic segmentation from the final instance segmentation output by our network, we
are able to obtain a small improvement of 0.4% in mean IoU over the output of the initial
semantic segmentation module.

5 Conclusion
Our proposed, end-to-end trained network outputs instance-level body part and human seg-
mentations, as well as category-level part segmentations in a single forward-pass. Moreover,
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Input Semantic Segmentation Instance Segmentation Ground Truth

Figure 4: Some results of our system. The first column shows the input image and the input
detections we obtained from training the R-FCN detector [11]. The second and third columns
show our final semantic segmentation (Sec. 3.4) and instance-level part segmentation. First
row: our network can deal with poor bounding box localisation, as it manages to segment
the third person from the left although the bounding box only partially covers her. Second
row: our method is robust against false positive detections because of the box term. Observe
that the bowl of the rightmost person in the bottom row is falsely detected as a person, but
rejected in the final prediction. Following rows: we are able to handle overlapping bounding
boxes by reasoning globally using the Instance CRF.

we have shown how segmenting objects into their constituent parts helps us segment the ob-
ject as a whole with our state-of-the-art results on instance-level segmentation of both body
parts and entire humans. Furthermore, our category-level segmentations improve after train-
ing for instance-level segmentation. Our future work is to train the object detector end-to-end
as well. Moreover, the improvement that we obtained in instance segmentation of humans as
a result of first segmenting parts motivates us to explore weakly-supervised methods which
do not require explicit object part annotations.

Acknowledgement We thank Stuart Golodetz for discussions and feedback. This work
was supported by the EPSRC, Clarendon Fund, ERC grant ERC-2012-AdG 321162-HELIOS,
EPSRC grant Seebibyte EP/M013774/1 and EPSRC/MURI grant EP/N019474/1.

Citation
Citation
{Dai, Li, He, and Sun} 2016{}



LI, ARNAB, TORR: HOLISTIC, INSTANCE-LEVEL HUMAN PARSING 11

References
[1] Anurag Arnab and Philip H. S. Torr. Bottom-up instance segmentation with deep higher order

crfs. In BMVC, 2016.

[2] Anurag Arnab and Philip HS Torr. Pixelwise instance segmentation with a dynamically instanti-
ated network. In CVPR, 2017.

[3] Anurag Arnab, Sadeep Jayasumana, Shuai Zheng, and Philip H. S. Torr. Higher order conditional
random fields in deep neural networks. In ECCV, 2016.

[4] Matthieu Bray, Pushmeet Kohli, and Philip Torr. Posecut: Simultaneous segmentation and 3d
pose estimation of humans using dynamic graph-cuts. In ECCV, pages 642–655. Springer, 2006.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR, 2015.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. arXiv preprint arXiv:1606.00915, 2016.

[7] Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu, and Alan L Yuille. Attention to scale: Scale-
aware semantic image segmentation. In CVPR, 2016.

[8] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan Yuille.
Detect what you can: Detecting and representing objects using holistic models and body parts.
In CVPR, 2014.

[9] Yi-Ting Chen, Xiaokai Liu, and Ming-Hsuan Yang. Multi-instance object segmentation with
occlusion handling. In CVPR, pages 3470–3478, 2015.

[10] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task
network cascades. In CVPR, 2016.

[11] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully
convolutional networks. In NIPS, 2016.

[12] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR,
volume 1, pages 886–893. IEEE, 2005.

[13] Jian Dong, Qiang Chen, Shuicheng Yan, and Alan Yuille. Towards unified object detection and
semantic segmentation. In ECCV, pages 299–314, 2014.

[14] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010.

[15] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial structures for object recognition.
IJCV, 61(1):55–79, 2005.

[16] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. PAMI, 32(9):1627–1645, 2010.

[17] Martin A Fischler and Robert A Elschlager. The representation and matching of pictorial struc-
tures. IEEE Transactions on computers, 100(1):67–92, 1973.

[18] Ke Gong, Xiaodan Liang, Xiaohui Shen, and Liang Lin. Look into person: Self-supervised
structure-sensitive learning and a new benchmark for human parsing. In CVPR, 2017.



12 LI, ARNAB, TORR: HOLISTIC, INSTANCE-LEVEL HUMAN PARSING

[19] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Se-
mantic contours from inverse detectors. In ICCV, pages 991–998. IEEE, 2011.

[20] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous detection
and segmentation. In ECCV, pages 297–312. Springer, 2014.

[21] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hypercolumns for object
segmentation and fine-grained localization. CVPR, 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[23] Martin Kiefel and Peter Vincent Gehler. Human pose estimation with fields of parts. In ECCV,
pages 331–346. Springer, 2014.

[24] P. Krähenbühl and V. Koltun. Efficient inference in fully connected CRFs with Gaussian edge
potentials. In NIPS, 2011.

[25] Lubor Ladicky, Philip HS Torr, and Andrew Zisserman. Human pose estimation using a joint
pixel-wise and part-wise formulation. In CVPR, pages 3578–3585, 2013.

[26] Ke Li, Bharath Hariharan, and Jitendra Malik. Iterative Instance Segmentation. In CVPR, 2016.

[27] Xiaodan Liang, Si Liu, Xiaohui Shen, Jianchao Yang, Luoqi Liu, Jian Dong, Liang Lin, and
Shuicheng Yan. Deep human parsing with active template regression. PAMI, 37(12):2402–2414,
2015.

[28] Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Jianchao Yang, Liang Lin, and Shuicheng Yan.
Proposal-free network for instance-level object segmentation. arXiv preprint arXiv:1509.02636,
2015.

[29] Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, and Shuicheng Yan. Semantic object
parsing with graph lstm. In ECCV, pages 125–143. Springer, 2016.

[30] Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, and Shuicheng Yan. Se-
mantic object parsing with local-global long short-term memory. In CVPR, June 2016.

[31] Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Zequn Jie, Jiashi Feng, Liang Lin, and Shuicheng
Yan. Reversible recursive instance-level object segmentation. In CVPR, 2016.

[32] Guosheng Lin, Chunhua Shen, and Ian Reid. Efficient piecewise training of deep structured
models for semantic segmentation. In CVPR, 2016.

[33] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet: Multi-path refinement
networks with identity mappings for high-resolution semantic segmentation. In CVPR, 2017.

[34] Shu Liu, Xiaojuan Qi, Jianping Shi, Hong Zhang, and Jiaya Jia. Multi-scale patch aggregation
(mpa) for simultaneous detection and segmentation. In CVPR, 2016.

[35] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations. In CVPR, pages 1096–1104, 2016.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015.

[37] Davide Modolo and Vittorio Ferrari. Learning semantic part-based models from google images.
In arXiv preprint arXiv:1609.03140, 2016.



LI, ARNAB, TORR: HOLISTIC, INSTANCE-LEVEL HUMAN PARSING 13

[38] Greg Mori, Xiaofeng Ren, Alexei A Efros, and Jitendra Malik. Recovering human body config-
urations: Combining segmentation and recognition. In CVPR. IEEE, 2004.

[39] Mengye Ren and Richard S Zemel. End-to-end instance segmentation and counting with recur-
rent attention. In CVPR, 2017.

[40] Bernardino Romera-Paredes and Philip HS Torr. Recurrent instance segmentation. In ECCV,
2016.

[41] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In CVPR, pages 761–769, 2016.

[42] Kah-Kay Sung. Learning and example selection for object and pattern detection. In MIT A.I.
Memo No. 1521, 1996.

[43] Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, and Alan L Yuille. Joint object
and part segmentation using deep learned potentials. In ICCV, pages 1573–1581, 2015.

[44] John Winn and Jamie Shotton. The layout consistent random field for recognizing and segmenting
partially occluded objects. In CVPR, 2006.

[45] Fangting Xia, Peng Wang, Liang-Chieh Chen, and Alan L Yuille. Zoom better to see clearer:
Human and object parsing with hierarchical auto-zoom net. In ECCV, pages 648–663. Springer,
2016.

[46] Kota Yamaguchi, M Hadi Kiapour, Luis E Ortiz, and Tamara L Berg. Parsing clothing in fashion
photographs. In CVPR, pages 3570–3577. IEEE, 2012.

[47] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Part-based r-cnns for fine-grained
category detection. In ECCV, pages 834–849. Springer, 2014.

[48] Ziyu Zhang, Alexander G Schwing, Sanja Fidler, and Raquel Urtasun. Monocular object instance
segmentation and depth ordering with cnns. In ICCV, pages 2614–2622, 2015.

[49] Ziyu Zhang, Sanja Fidler, and Raquel Urtasun. Instance-level segmentation for autonomous
driving with deep densely connected mrfs. In CVPR, 2016.

[50] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene
parsing network. In CVPR, 2017.

[51] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su,
Dalong Du, Chang Huang, and Philip Torr. Conditional random fields as recurrent neural net-
works. In ICCV, 2015.



14 LI, ARNAB, TORR: HOLISTIC, INSTANCE-LEVEL HUMAN PARSING

Appendix
In this appendix, we present additional results of our proposed approach in Sec. A, and provide addi-
tional training and implementation details in Sec. B (both for our model, and the strong MNC base-
line [10]).

A Additional Results
In our main paper, we reported our APr results averaged over all classes. Fig. 5 visualises the per-
class results of our best model at different IoU thresholds. Fig. 6 displays the success cases of our
method, while Fig. 7 shows examples of failure cases. Furthermore, we illustrate the strengths and
weaknesses of our part instance segmentation method in comparison to MNC [10] in Fig. 8, and com-
pare our instance-level human segmentation results, which we obtain by the simple mapping described
in Sec. 3.4 of our main paper, to MNC in Fig. 9.

Finally, we attach an additional video. We run our system offline, on a frame-by-frame basis on
the entire music video, and show how our method is able to accurately parse humans at both category
and instance level on internet data outside the Pascal dataset. Instance-level segmentation of videos
requires data association. We use a simple, greedy method which operates on a frame-by-frame basis.
Segments from one frame are associated to segments in the next frame based on the IoU, using the
same method we use for our loss function as described in Sec. 3.3 of the main paper.

Figure 5: Visualisation of per-class results for different IoU thresholds on the Pascal
Person-Parts test set. The heatmap shows the per-class APr of our best model at IoU thresh-
olds from 0.1 to 0.9 in increments of 0.1 on the Pascal Person-Parts test set. It shows that
our method achieves best instance accuracy for the head category, and finds lower arms and
lower legs most challenging to segment correctly. This is likely because of the thin shape of
the lower limbs which is known to pose difficulty for semantic segmentation.
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Input Semantic Segmentation Instance Segmentation Ground Truth

Figure 6: Success cases of our method. The first column shows the input image and the
input detections we obtained from training the R-FCN detector [11]. The second column
shows our final semantic segmentation (as described in Sec. 3.4 of the main paper). Our
proposed method is able to leverage an initial category-level segmentation network and hu-
man detections to produce accurate instance-level part segmentation as shown in the third
column.
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Input Semantic Segmentation Instance Segmentation Ground Truth

Figure 7: Failure cases of our method. First three rows: a missing human detection con-
fuses the instance-level segmentation module. Fourth and fifth row: overlapping detection
bounding boxes lead to incorrect instance label assignment when the overlapping region are
visually similar. Sixth row: although our method is robust against false positive detections,
two small regions on the leftmost person’s left arm and left knee are assigned to the false
positive detection.
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Figure 8: Comparison to MNC on the Pascal Person-Parts [8] test set. First row: un-
like MNC which predicts for each part instance independently, our method reasons globally
and jointly. As a result, MNC predicts two instances of lower legs for the same lower leg
of the second and third person from the left. Furthermore, with a dedicated category-level
segmentation module, we are less prone to false negatives, whereas MNC misses the legs of
the rightmost person, and the lower arm of the second person from the right. Second row:
while we can handle poor bounding box localisation because of our global potential term,
MNC is unable to segment regions outside the bounding boxes it generates. Consequently,
only one lower arm of the person on the left is segmented as the other one is outside the
bounding box. The square corners of the segmented lower arm correspond to the limits im-
posed by the bounding box which MNC internally uses (box generation is the first stage of
the cascade [10]). Third row: By analysing an image globally and employing a differen-
tiable CRF, our method can produce more precise boundaries. As MNC does not perform
category-level segmentation over the entire image, it has no incentive to produce a coherent
and continuous prediction. Visually, this is reflected in the gaps of “background” between
body parts of the same person. Fourth row: MNC predicts two instances of lower leg for the
second person from the right, and fails to segment any lower arms for all four people due to
the aforementioned problems.
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Input MNC [10] Ours Ground Truth

Figure 9: Comparison to MNC on the Pascal Person-Parts [8] test set for instance-level
human segmentation. To generate the results in the second column, we run the public
MNC model trained on VOC 2011/SBD [19] using the default parameters and extract only
its human instance predictions. In contrast with proposal-driven methods such as MNC,
our approach assigns each pixel to only one instance, is robust against non-ideal bounding
boxes, and often produces better boundaries due to the Instance CRF which is trained end-
to-end. First and second row: since MNC predicts instances independently, it is prone to
predicting multiple instances for a single person. Third row: due to the global potential term,
we can segment regions outside of a detection bounding box which fails to cover the entire
person, whereas MNC is unable to recover from such imperfect bounding boxes, leading to
its frequent occurrences of truncated instance predictions. Fourth row: a case where MNC
and our method show different failure modes. MNC predicts three people where there are
only two, and our method can only predict one instance due to a missing detection.
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Input MNC [10] Ours Ground Truth

Figure 9 (Continued): Comparison to MNC on the Pascal Person-Parts [8] test set for
instance-level human segmentation. First row: MNC is unable to recover from a false
positive detection and predicts two people. Second row: while both MNC and our method
start off with poor bounding box localisation that does not cover the whole instance, we are
able to segment the entire person, whereas MNC is bounded by its flawed region proposal.
Third row: MNC performs better in this case as it is able to segment the infant, whereas we
miss her completely due to a false negative person detection.
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B Additional information

We detail our initial category-level segmentation module and compare it to DeepLab-v2 [6] in Sec. B.1,
present our network training details in Sec. B.2, and finally describe how we train the MNC model
which serves as our baseline in Sec. B.3.

B.1 Details of the category-level segmentation module

As shown in Fig 10b, the structure of our category-level segmentation module consists of a ResNet-
101 backbone, and a classifier that extracts multi-scale features from the ResNet-101 output by using
average pooling with different kernel sizes. While our category-level segmentation module and the
Deeplab-v2 network (Fig. 10a) of Chen et al. [6] both attempt to exploit multi-scale information in
the image, the approach of [6] entails executing three forward passes for each image, whereas we only
need a single forward pass.

In comparison to Deeplab-v2, our network saves both memory and time, and achieves better per-
formance. To carry out a single forward pass, our network uses 4.3GB of memory while Deeplab-v2 [6]
needs 9.5GB, 120% more than ours. Speed-wise, our network runs forward passes at 0.255 seconds
per image (3.9 fps), whereas Deeplab-v2 takes 55% longer, at 0.396 seconds per image (2.5 fps) on
average. When Deeplab-v2 adds a CRF with 10 mean-field iterations to post-process the network out-
put, it gains a small improvement in mean IoU by 0.54% [6], but it requires 11.2GB of memory to
make a forward pass (140% of the total amount used by our full network including the instance-level
segmentation module), and takes 0.960 seconds per image (1.0 fps), almost a quater of our frame rate.
Tests are done on a single GeForce GTX Titan X (Maxwell) card. Overall, we are able to achieve better
segmentation accuracy (as shown in Tab. 3 of our main paper) and is more memory- and time-efficient
than Deeplab-v2.

B.2 Training our proposed network

B.2.1 Training the category-level segmentation module

We initialise our semantic segmentation network with the COCO pre-trained ResNet-101 weights pro-
vided by [6]. Training is first performed on the Pascal VOC 2012 training set using the extra anno-
tations from [19], which combine to a total of 9012 training images. Care is taken to ensure that all
images from the Pascal Person-Parts test set is excluded from this training set. A polynomial learning
rate policy is adopted such that the effective learning rate at iteration i is given by li = l0(1− i

imax
)p,

where the base learning rate, l0, is set to 6.25×10−4, the total number of iterations, imax, is set to 30k,
and the power, p, is set to 0.9. A batch size of 16 is used. However, due to memory constraints, we
simulate this batch size by “accumulating gradients”: We carry out 16 forward and backward passes
with one image per iteration, and only perform the weight update after completing all 16 passes. We
use a momentum of 0.9 and weight decay of 1× 10−4 for these experiments. After 30k of iterations
are completed, we take the best performing model and finetune on the Pascal Person-Parts training set
using the same training scheme as described above. Note that the parameters of the batch normalisation
modules are kept unchanged in the whole learning process.

Online data-augmentation is performed during training to regularise the model. The training im-
ages are randomly mirrored, scaled by a ratio between 0.5 and 2, rotated by an angle between -10 and
10 degrees, translated by a random amount in the HSV colour space, and blurred with a randomly-sized
Gaussian kernel, all on-the-fly. We observe that these techniques are effective at reducing the accuracy
gap between training and testing, leading to overall higher test accuracies.
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(a) (b)

Figure 10: Comparison of the Deeplab-v2 network structure which achieves 64.9% IoU on
the Pascal Person-Parts dataset [6] and our network structure. The numbers following the
layer type denote the kernel size and number of filters. For pooling layers, only their kernel
sizes are shown as the number of filters is not applicable. The upsampling ratios can be in-
ferred from the context. Fig. 10a: in the Deeplab-v2 architecture, a 513×513×3 input image
is downsampled by two different ratios (0.75 and 0.5) to produce multi-scale input at three
different resolutions. The three resolutions are independently processed by a ResNet-101-
based network using shared weights (shown by the individually coloured paths). The output
feature maps are then upsampled where appropriate, combined by taking the elementwise
maximum, and finally upsampled back to 513×513. Fig. 10b: the category-level segmen-
tation module proposed in this paper forwards an input image of size 521×521×3 through
a ResNet-101-based CNN, producing a feature map of resolution 66×66×2048. This fea-
ture map is average-pooled with four different kernel sizes, giving us four feature maps
with spatial resolutions 1×1, 2×2, 3×3, and 6×6 respectively. Each feature map undergoes
convolution and upsampling, before being concatenated together with each other and the
66×66×2048 ResNet-101 output. This is followed by a convolution layer that reduces the
dimension of the concatenated features to 512, and a convolutional classifier that maps the
512 channels to the size of label space in the dataset. Finally, the prediction is upsampled
back to 521×521. In both Fig. 10a and 10b, the ResNet-101 backbone uses dilated convo-
lution such that its output at res5c is at 1/8 of the input resolution, instead of 1/32 for the
original ResNet-101 [22]. The convolutional classifiers (coloured in purple) output C chan-
nels, corresponding to the number of classes in the dataset including a background class. For
the Pascal Person-Parts Dataset, C is 7. Best viewed in colour.

B.2.2 Training the instance-level segmentation module

In our model, the pairwise term of the fully-connected CRF takes the following form:

ψPairwise(vi,v j) = µ(vi,v j)k(fi, f j) (5)

where µ(·, ·) is a compatibility function, k(·, ·) is a kernel function, and fi is a feature vector at spatial
location i containing the 3-dimensional colour vector Ii and the 2-dimensional position vector pi [24].
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We further define the kernel as follows:

k(fi, f j) = w(1)exp
(
−
|pi− p j|2

2θ 2
α

−
|Ii− I j|2

2θ 2
β

)
+w(2)exp

(
−
|pi− p j|2

2θ 2
γ

)
(6)

where w(1) and w(2) are the linear combination weights for the bilateral term and the Gaussian term
respectively. In order to determine the initial values for the parameters in the Instance CRF to train
from, we carry out a random search. According to the search results, the best prediction accuracy is
obtained by initialising w(1) = 8, w(2) = 2, θα = 2, θβ = 8, θγ = 2. Furthermore, we use a fixed learning
rate of 1×10−6, momentum of 0.9, and weight decay of 1×10−4 for training both the instance-level
and category-level segmentation modules jointly. Although we previously use the polynomial learning
rate policy, we find that for training the instance-level segmentation module, a fixed learning rate leads
to better results. Furthermore, our experiments show that a batch size of one works best at this training
stage. Using this scheme, we train for 175k iterations, or approximately 100 epochs.

B.3 Training Multi-task Network Cascades (MNC)
We use the publicly available Multi-task Network Cascades (MNC) framework [10], and train a new
model for instance-level part segmentation using the Pascal Person-Parts dataset. The weights are ini-
tialised with the officially released MNC model1 which has been trained on Pascal VOC 2011/SBD [19].
The base learning rate is set to 1× 10−3, which is reduced by 10 times after 20k iterations. A total
of 25k training iterations are carried out. A batch size of 8, momentum of 0.9 and weight decay of
5×10−4 are used. These settings are identical to the ones used in training the original MNC and pro-
vided in their public source code. Using these settings, we are also able to reproduce the experimental
results obtained in the original MNC paper [10], and hence we believe that the MNC model we have
trained acts as a strong baseline for our proposed approach.

1https://github.com/daijifeng001/MNC
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