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2. Network Overview 
We propose a simple end-to-end trainable network that leverages the 

great advances made in Semantic Segmentation [1] and Object Detec-

tion [2] to address the related problem of Instance Segmentation.  

 

 Initially perform semantic segmentation of the image.  

 From this category level segmentation, we reason about instances. 

 We can identify instances using: 

 The outputs of an object detector [2]. 

 Higher Order Detection Potentials [1] in the segmentation net-

work, which are robust to false positive detections and recalibrate 

detection scores. 

4. Results 
 As in Object Detection we calculate the mean Average Precision.  

 However, we use the  metric [4] where a prediction is consid-

ered correct if the predicted and ground truth regions have an In-

tersection over Union (IoU) above a certain threshold.  

 In Object Detection, the IoU between bounding boxes is used. 

 Perform particularly well at high thresholds which require precise 

segmentations. 

3. Instance Segmentation Network 
From our category-level segmentation, each pixel is assigned to an 

object instance. Each of the  detections defines a possible in-

stance, resulting in a problem of  labels, including background. 

 

If a pixel falls within the bounding box  of a detection, we probabil-

itistically assign the pixel to that instance. The probability is propor-

tional to the recalibrated detection score,  (obtained from the De-

tection Potentials in the Higher Order CRF), and the semantic seg-

mentation confidence for that detected class:  

 

 
 

Here,  is a multinomial random variable indicating the “identified 

instance” at pixel ,  is the output of the initial category-level 

segmentation stage of our network and denotes the probability of 

pixel  taking the label , and fis the normalisation factor. 

This then acts as the unary potentials of a Dense CRF with pairwise 

terms encouraging appearance and spatial consistency [3].   

 

Figure 3: Overview of our proposed end-to-end method. Our system consists of an 

initial network for semantic segmentation, and then additional modules for instance  

segmentation. All modules are fully differentiable. 
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Table 1: Results on the Pascal VOC 2012 Validation Set 

Method at 0.5 at 0.7  at 0.9  

SDS [4] 43.8 21.3 0.9 - 

Chen et al. [5] 46.3 27.0 2.6 - 

PFN [6] 58.7 42.5 15.7 52.3 

Ours 58.3 45.4 20.1 53.1 

5. Conclusion 
We have presented a simple end-to-end method that effectively leverag-

es state-of-the-art Semantic Segmentation and Object Detection net-

works to perform the increasingly relevant problem of Instance Segmen-

tation. We have outperformed competing methods, particularly at high 

IoU thresholds which shows that utilising bottom-up segmentations ena-

bles more precise outputs. 

 

 

 

 

 

Figure 1: Instance Segmentation (right) is at the intersection of Object Detection 

(left) and Semantic Segmentation (middle). 

1. Introduction 
 Object Detection localises objects 

 but does not segment them. 

 Semantic Segmentation labels individual pixels 

 but has no notion of different instances of the same class. 

 Instance Segmentation recognises and localises objects at a pixel level. 

It’s the intersection of Object Detection and Semantic Segmentation.  

Figure 3: Left: Input image and object detections. Middle: Semantic Segmenta-

tion output. Right: Instance Segmentation output 




